Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 51,52
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Chiron Media, Wallingford, Reino Unido
EUR 56,65
Cantidad disponible: 10 disponibles
Añadir al carritoPaperback. Condición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 58,43
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 74,62
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. pp. 228.
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
EUR 68,23
Cantidad disponible: 15 disponibles
Añadir al carritoCondición: New. 2011. Paperback. . . . . .
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
EUR 82,84
Cantidad disponible: 15 disponibles
Añadir al carritoCondición: New. 2011. Paperback. . . . . . Books ship from the US and Ireland.
Librería: moluna, Greven, Alemania
EUR 48,37
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 58,39
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - A mathematically precise definition of the intuitive notion of 'algorithm' was implicit in Kurt Godel's [1931] paper on formally undecidable propo sitions of arithmetic. During the 1930s, in the work of such mathemati cians as Alonzo Church, Stephen Kleene, Barkley Rosser and Alfred Tarski, Godel's idea evolved into the concept of a recursive function. Church pro posed the thesis, generally accepted today, that an effective algorithm is the same thing as a procedure whose output is a recursive function of the input (suitably coded as an integer). With these concepts, it became possible to prove that many familiar theories are undecidable (or non-recursive)-i. e. , that there does not exist an effective algorithm (recursive function) which would allow one to determine which sentences belong to the theory. It was clear from the beginning that any theory with a rich enough mathematical content must be undecidable. On the other hand, some theories with a substantial content are decidable. Examples of such decidabLe theories are the theory of Boolean algebras (Tarski [1949]), the theory of Abelian groups (Szmiele~ [1955]), and the theories of elementary arithmetic and geometry (Tarski [1951]' but Tarski discovered these results around 1930). The de termination of precise lines of division between the classes of decidable and undecidable theories became an important goal of research in this area. algebra we mean simply any structure (A, h(i E I)} consisting of By an a nonvoid set A and a system of finitary operations Ii over A.
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 99,56
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Like New. LIKE NEW. SHIPS FROM MULTIPLE LOCATIONS. book.
Idioma: Inglés
Publicado por Birkhäuser, Birkhäuser Okt 2011, 2011
ISBN 10: 1461289084 ISBN 13: 9781461289081
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 53,49
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -A mathematically precise definition of the intuitive notion of 'algorithm' was implicit in Kurt Godel's [1931] paper on formally undecidable propo sitions of arithmetic. During the 1930s, in the work of such mathemati cians as Alonzo Church, Stephen Kleene, Barkley Rosser and Alfred Tarski, Godel's idea evolved into the concept of a recursive function. Church pro posed the thesis, generally accepted today, that an effective algorithm is the same thing as a procedure whose output is a recursive function of the input (suitably coded as an integer). With these concepts, it became possible to prove that many familiar theories are undecidable (or non-recursive)-i. e. , that there does not exist an effective algorithm (recursive function) which would allow one to determine which sentences belong to the theory. It was clear from the beginning that any theory with a rich enough mathematical content must be undecidable. On the other hand, some theories with a substantial content are decidable. Examples of such decidabLe theories are the theory of Boolean algebras (Tarski [1949]), the theory of Abelian groups (Szmiele~ [1955]), and the theories of elementary arithmetic and geometry (Tarski [1951]' but Tarski discovered these results around 1930). The de termination of precise lines of division between the classes of decidable and undecidable theories became an important goal of research in this area. algebra we mean simply any structure (A, h(i E I)} consisting of By an a nonvoid set A and a system of finitary operations Ii over A. 228 pp. Englisch.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 72,99
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand pp. 228 23:B&W 6 x 9 in or 229 x 152 mm Perfect Bound on White w/Gloss Lam.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 75,79
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND pp. 228.
Idioma: Inglés
Publicado por Birkhäuser Boston, Birkhäuser Boston Okt 2011, 2011
ISBN 10: 1461289084 ISBN 13: 9781461289081
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 53,49
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -A mathematically precise definition of the intuitive notion of 'algorithm' was implicit in Kurt Godel's [1931] paper on formally undecidable propo sitions of arithmetic. During the 1930s, in the work of such mathemati cians as Alonzo Church, Stephen Kleene, Barkley Rosser and Alfred Tarski, Godel's idea evolved into the concept of a recursive function. Church pro posed the thesis, generally accepted today, that an effective algorithm is the same thing as a procedure whose output is a recursive function of the input (suitably coded as an integer). With these concepts, it became possible to prove that many familiar theories are undecidable (or non-recursive)-i. e. , that there does not exist an effective algorithm (recursive function) which would allow one to determine which sentences belong to the theory. It was clear from the beginning that any theory with a rich enough mathematical content must be undecidable. On the other hand, some theories with a substantial content are decidable. Examples of such decidabLe theories are the theory of Boolean algebras (Tarski [1949]), the theory of Abelian groups (Szmiele~ [1955]), and the theories of elementary arithmetic and geometry (Tarski [1951]' but Tarski discovered these results around 1930). The de termination of precise lines of division between the classes of decidable and undecidable theories became an important goal of research in this area. algebra we mean simply any structure (A, h(i E I)} consisting of By an a nonvoid set A and a system of finitary operations Ii over A.Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 228 pp. Englisch.
Librería: preigu, Osnabrück, Alemania
EUR 50,25
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Structure of Decidable Locally Finite Varieties | Ralph McKenzie (u. a.) | Taschenbuch | viii | Englisch | 2011 | Birkhäuser | EAN 9781461289081 | Verantwortliche Person für die EU: Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.