Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 91,12
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
EUR 105,65
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoHRD. Condición: New. New Book. Shipped from UK. Established seller since 2000.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 104,39
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 107,39
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 105,64
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 121,61
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoCondición: New. In.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 111,95
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
Publicado por John Wiley and Sons Ltd, 2018
ISBN 10: 1119417864 ISBN 13: 9781119417866
Idioma: Inglés
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 122,58
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoHardback. Condición: New. New copy - Usually dispatched within 4 working days. 1091.
Publicado por Wiley-Blackwell 2018-08-24, 2018
ISBN 10: 1119417864 ISBN 13: 9781119417866
Idioma: Inglés
Librería: Chiron Media, Wallingford, Reino Unido
EUR 118,48
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoHardcover. Condición: New.
EUR 114,96
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoCondición: New. Marc S. Paolella, PhD, is a Professor at the Department of Banking and Finance, University of Zurich. He is also the Editor of Econometrics and an Associate Editor of the Royal Statistical Society Journal Series AFundamental Statistical InferenceA Compu.
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Original o primera edición
EUR 135,54
Convertir monedaCantidad disponible: 15 disponibles
Añadir al carritoCondición: New. 2018. 1st Edition. hardcover. . . . . .
Librería: INDOO, Avenel, NJ, Estados Unidos de America
EUR 93,48
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por John Wiley and Sons Inc, US, 2018
ISBN 10: 1119417864 ISBN 13: 9781119417866
Idioma: Inglés
Librería: Rarewaves.com UK, London, Reino Unido
EUR 146,94
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardback. Condición: New. A hands-on approach to statistical inference that addresses the latest developments in this ever-growing field This clear and accessible book for beginning graduate students offers a practical and detailed approach to the field of statistical inference, providing complete derivations of results, discussions, and MATLAB programs for computation. It emphasizes details of the relevance of the material, intuition, and discussions with a view towards very modern statistical inference. In addition to classic subjects associated with mathematical statistics, topics include an intuitive presentation of the (single and double) bootstrap for confidence interval calculations, shrinkage estimation, tail (maximal moment) estimation, and a variety of methods of point estimation besides maximum likelihood, including use of characteristic functions, and indirect inference. Practical examples of all methods are given. Estimation issues associated with the discrete mixtures of normal distribution, and their solutions, are developed in detail. Much emphasis throughout is on non-Gaussian distributions, including details on working with the stable Paretian distribution and fast calculation of the noncentral Student's t. An entire chapter is dedicated to optimization, including development of Hessian-based methods, as well as heuristic/genetic algorithms that do not require continuity, with MATLAB codes provided. The book includes both theory and nontechnical discussions, along with a substantial reference to the literature, with an emphasis on alternative, more modern approaches. The recent literature on the misuse of hypothesis testing and p-values for model selection is discussed, and emphasis is given to alternative model selection methods, though hypothesis testing of distributional assumptions is covered in detail, notably for the normal distribution. Presented in three parts-Essential Concepts in Statistics; Further Fundamental Concepts in Statistics; and Additional Topics-Fundamental Statistical Inference: A Computational Approach offers comprehensive chapters on: Introducing Point and Interval Estimation; Goodness of Fit and Hypothesis Testing; Likelihood; Numerical Optimization; Methods of Point Estimation; Q-Q Plots and Distribution Testing; Unbiased Point Estimation and Bias Reduction; Analytic Interval Estimation; Inference in a Heavy-Tailed Context; The Method of Indirect Inference; and, as an appendix, A Review of Fundamental Concepts in Probability Theory, the latter to keep the book self-contained, and giving material on some advanced subjects such as saddlepoint approximations, expected shortfall in finance, calculation with the stable Paretian distribution, and convergence theorems and proofs.
Publicado por John Wiley & Sons Inc, New York, 2018
ISBN 10: 1119417864 ISBN 13: 9781119417866
Idioma: Inglés
Librería: CitiRetail, Stevenage, Reino Unido
EUR 117,36
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. A hands-on approach to statistical inference that addresses the latest developments in this ever-growing field This clear and accessible book for beginning graduate students offers a practical and detailed approach to the field of statistical inference, providing complete derivations of results, discussions, and MATLAB programs for computation. It emphasizes details of the relevance of the material, intuition, and discussions with a view towards very modern statistical inference. In addition to classic subjects associated with mathematical statistics, topics include an intuitive presentation of the (single and double) bootstrap for confidence interval calculations, shrinkage estimation, tail (maximal moment) estimation, and a variety of methods of point estimation besides maximum likelihood, including use of characteristic functions, and indirect inference. Practical examples of all methods are given. Estimation issues associated with the discrete mixtures of normal distribution, and their solutions, are developed in detail. Much emphasis throughout is on non-Gaussian distributions, including details on working with the stable Paretian distribution and fast calculation of the noncentral Student's t. An entire chapter is dedicated to optimization, including development of Hessian-based methods, as well as heuristic/genetic algorithms that do not require continuity, with MATLAB codes provided. The book includes both theory and nontechnical discussions, along with a substantial reference to the literature, with an emphasis on alternative, more modern approaches. The recent literature on the misuse of hypothesis testing and p-values for model selection is discussed, and emphasis is given to alternative model selection methods, though hypothesis testing of distributional assumptions is covered in detail, notably for the normal distribution. Presented in three partsEssential Concepts in Statistics; Further Fundamental Concepts in Statistics; and Additional TopicsFundamental Statistical Inference: A Computational Approach offers comprehensive chapters on: Introducing Point and Interval Estimation; Goodness of Fit and Hypothesis Testing; Likelihood; Numerical Optimization; Methods of Point Estimation; Q-Q Plots and Distribution Testing; Unbiased Point Estimation and Bias Reduction; Analytic Interval Estimation; Inference in a Heavy-Tailed Context; The Method of Indirect Inference; and, as an appendix, A Review of Fundamental Concepts in Probability Theory, the latter to keep the book self-contained, and giving material on some advanced subjects such as saddlepoint approximations, expected shortfall in finance, calculation with the stable Paretian distribution, and convergence theorems and proofs. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Publicado por John Wiley and Sons Inc, US, 2018
ISBN 10: 1119417864 ISBN 13: 9781119417866
Idioma: Inglés
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
EUR 156,08
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardback. Condición: New. A hands-on approach to statistical inference that addresses the latest developments in this ever-growing field This clear and accessible book for beginning graduate students offers a practical and detailed approach to the field of statistical inference, providing complete derivations of results, discussions, and MATLAB programs for computation. It emphasizes details of the relevance of the material, intuition, and discussions with a view towards very modern statistical inference. In addition to classic subjects associated with mathematical statistics, topics include an intuitive presentation of the (single and double) bootstrap for confidence interval calculations, shrinkage estimation, tail (maximal moment) estimation, and a variety of methods of point estimation besides maximum likelihood, including use of characteristic functions, and indirect inference. Practical examples of all methods are given. Estimation issues associated with the discrete mixtures of normal distribution, and their solutions, are developed in detail. Much emphasis throughout is on non-Gaussian distributions, including details on working with the stable Paretian distribution and fast calculation of the noncentral Student's t. An entire chapter is dedicated to optimization, including development of Hessian-based methods, as well as heuristic/genetic algorithms that do not require continuity, with MATLAB codes provided. The book includes both theory and nontechnical discussions, along with a substantial reference to the literature, with an emphasis on alternative, more modern approaches. The recent literature on the misuse of hypothesis testing and p-values for model selection is discussed, and emphasis is given to alternative model selection methods, though hypothesis testing of distributional assumptions is covered in detail, notably for the normal distribution. Presented in three parts-Essential Concepts in Statistics; Further Fundamental Concepts in Statistics; and Additional Topics-Fundamental Statistical Inference: A Computational Approach offers comprehensive chapters on: Introducing Point and Interval Estimation; Goodness of Fit and Hypothesis Testing; Likelihood; Numerical Optimization; Methods of Point Estimation; Q-Q Plots and Distribution Testing; Unbiased Point Estimation and Bias Reduction; Analytic Interval Estimation; Inference in a Heavy-Tailed Context; The Method of Indirect Inference; and, as an appendix, A Review of Fundamental Concepts in Probability Theory, the latter to keep the book self-contained, and giving material on some advanced subjects such as saddlepoint approximations, expected shortfall in finance, calculation with the stable Paretian distribution, and convergence theorems and proofs.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 147,35
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoHardcover. Condición: Brand New. 564 pages. 10.00x7.00x1.00 inches. In Stock.
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 143,89
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware - Praxisorientiertes Fachbuch der Interferenzstatistik mit den neuesten Entwicklungen aus diesem ständig wachsenden Wissensgebiet.Dieses übersichtlich und zugängliche Fachbuch richtet sich an Studenten höherer Semester, präsentiert die Interferenzstatistik ausführlich und praxisorientiert und stellt Ergebnisableitungen sowie MATLAB-Programme umfassend dar, ergänzt um Erläuterungen. Besonderes Augenmerk liegt auf einzelnen bedeutenden Aspekten, auf einer intuitiven Herangehensweise und auf Diskussionen. Der Blick auf die Interferenzstatistik ist dabei überaus modern. Inhalte neben den klassischen Themen rund um die mathematische Statistik: intuitive Präsentation von Einfach-/Doppel-Bootstraps bei der Berechnung von Konfidenzintervallen, Schrumpfungsschätzung, Schätzung des maximalen Moments sowie eine Vielzahl vom Methoden der Punktschätzung, maximale Wahrscheinlichkeit, Anwendung von charakteristischen Funktionen und indirekte Interferenz. Zu allen Methoden gibt es praktische Beispiele. Ausführlich behandelt werden Schätzprobleme und deren Lösung in Verbindung mit der diskreten Mischung bei Normalverteilungen. Durchgängig liegt der Schwerpunkt auf nicht-Gaußschen Verteilungen, einschließlich der ausführlichen Behandlung der stabilen Pareto-Verteilung und der schnellen Berechnung von nicht-zentralen Student-t-Tests. Ein komplettes Kapitel widmet sich der Optimierung, darunter der Entwicklung von Hessian-Methoden, heuristische/genetische Algorithmen, die keine Kontinuität erfordern. Die entsprechenden MATLAB-Codes werden zur Verfügung gestellt. Der Fokus liegt auch auf Berechnungen, die das Thema greifbar und für die Studierenden zugänglich machen.
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 135,66
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: New. New. book.
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
EUR 166,31
Convertir monedaCantidad disponible: 15 disponibles
Añadir al carritoCondición: New. 2018. 1st Edition. hardcover. . . . . . Books ship from the US and Ireland.
Librería: Ubiquity Trade, Miami, FL, Estados Unidos de America
EUR 136,89
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Brand new! Please provide a physical shipping address.
Publicado por John Wiley & Sons Inc, New York, 2018
ISBN 10: 1119417864 ISBN 13: 9781119417866
Idioma: Inglés
Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America
EUR 133,18
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. A hands-on approach to statistical inference that addresses the latest developments in this ever-growing field This clear and accessible book for beginning graduate students offers a practical and detailed approach to the field of statistical inference, providing complete derivations of results, discussions, and MATLAB programs for computation. It emphasizes details of the relevance of the material, intuition, and discussions with a view towards very modern statistical inference. In addition to classic subjects associated with mathematical statistics, topics include an intuitive presentation of the (single and double) bootstrap for confidence interval calculations, shrinkage estimation, tail (maximal moment) estimation, and a variety of methods of point estimation besides maximum likelihood, including use of characteristic functions, and indirect inference. Practical examples of all methods are given. Estimation issues associated with the discrete mixtures of normal distribution, and their solutions, are developed in detail. Much emphasis throughout is on non-Gaussian distributions, including details on working with the stable Paretian distribution and fast calculation of the noncentral Student's t. An entire chapter is dedicated to optimization, including development of Hessian-based methods, as well as heuristic/genetic algorithms that do not require continuity, with MATLAB codes provided. The book includes both theory and nontechnical discussions, along with a substantial reference to the literature, with an emphasis on alternative, more modern approaches. The recent literature on the misuse of hypothesis testing and p-values for model selection is discussed, and emphasis is given to alternative model selection methods, though hypothesis testing of distributional assumptions is covered in detail, notably for the normal distribution. Presented in three partsEssential Concepts in Statistics; Further Fundamental Concepts in Statistics; and Additional TopicsFundamental Statistical Inference: A Computational Approach offers comprehensive chapters on: Introducing Point and Interval Estimation; Goodness of Fit and Hypothesis Testing; Likelihood; Numerical Optimization; Methods of Point Estimation; Q-Q Plots and Distribution Testing; Unbiased Point Estimation and Bias Reduction; Analytic Interval Estimation; Inference in a Heavy-Tailed Context; The Method of Indirect Inference; and, as an appendix, A Review of Fundamental Concepts in Probability Theory, the latter to keep the book self-contained, and giving material on some advanced subjects such as saddlepoint approximations, expected shortfall in finance, calculation with the stable Paretian distribution, and convergence theorems and proofs. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Publicado por John Wiley & Sons Inc, New York, 2018
ISBN 10: 1119417864 ISBN 13: 9781119417866
Idioma: Inglés
Librería: AussieBookSeller, Truganina, VIC, Australia
EUR 190,92
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. A hands-on approach to statistical inference that addresses the latest developments in this ever-growing field This clear and accessible book for beginning graduate students offers a practical and detailed approach to the field of statistical inference, providing complete derivations of results, discussions, and MATLAB programs for computation. It emphasizes details of the relevance of the material, intuition, and discussions with a view towards very modern statistical inference. In addition to classic subjects associated with mathematical statistics, topics include an intuitive presentation of the (single and double) bootstrap for confidence interval calculations, shrinkage estimation, tail (maximal moment) estimation, and a variety of methods of point estimation besides maximum likelihood, including use of characteristic functions, and indirect inference. Practical examples of all methods are given. Estimation issues associated with the discrete mixtures of normal distribution, and their solutions, are developed in detail. Much emphasis throughout is on non-Gaussian distributions, including details on working with the stable Paretian distribution and fast calculation of the noncentral Student's t. An entire chapter is dedicated to optimization, including development of Hessian-based methods, as well as heuristic/genetic algorithms that do not require continuity, with MATLAB codes provided. The book includes both theory and nontechnical discussions, along with a substantial reference to the literature, with an emphasis on alternative, more modern approaches. The recent literature on the misuse of hypothesis testing and p-values for model selection is discussed, and emphasis is given to alternative model selection methods, though hypothesis testing of distributional assumptions is covered in detail, notably for the normal distribution. Presented in three partsEssential Concepts in Statistics; Further Fundamental Concepts in Statistics; and Additional TopicsFundamental Statistical Inference: A Computational Approach offers comprehensive chapters on: Introducing Point and Interval Estimation; Goodness of Fit and Hypothesis Testing; Likelihood; Numerical Optimization; Methods of Point Estimation; Q-Q Plots and Distribution Testing; Unbiased Point Estimation and Bias Reduction; Analytic Interval Estimation; Inference in a Heavy-Tailed Context; The Method of Indirect Inference; and, as an appendix, A Review of Fundamental Concepts in Probability Theory, the latter to keep the book self-contained, and giving material on some advanced subjects such as saddlepoint approximations, expected shortfall in finance, calculation with the stable Paretian distribution, and convergence theorems and proofs. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.