Idioma: Inglés
Publicado por Cambridge University Press, 2022
ISBN 10: 1108843603 ISBN 13: 9781108843607
Librería: Books From California, Simi Valley, CA, Estados Unidos de America
EUR 22,08
Cantidad disponible: 1 disponibles
Añadir al carritohardcover. Condición: Very Good. Cover and edges may have some wear.
Idioma: Inglés
Publicado por Cambridge University Press, 2022
ISBN 10: 1108843603 ISBN 13: 9781108843607
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 57,01
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por Cambridge University Press, 2022
ISBN 10: 1108843603 ISBN 13: 9781108843607
Librería: Textbooks_Source, Columbia, MO, Estados Unidos de America
EUR 55,85
Cantidad disponible: 4 disponibles
Añadir al carritohardcover. Condición: New. New. Ships in a BOX from Central Missouri! UPS shipping for most packages, (Priority Mail for AK/HI/APO/PO Boxes).
Idioma: Inglés
Publicado por Cambridge University Press, 2022
ISBN 10: 1108843603 ISBN 13: 9781108843607
Librería: Prior Books Ltd, Cheltenham, Reino Unido
Original o primera edición
EUR 38,50
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Like New. First Edition. Hardback book in nearly new condition: firm and square with strong joints. Just a few hardly noticeable rubs or very mild bumps. Hence a non-text page shows a small 'damaged' stamp. Despite such this book looks and feels unread. Thus the contents are crisp, fresh and tight. And so a very nice book in great condition, now offered for sale at a reasonable price.
Idioma: Inglés
Publicado por Cambridge University Press, 2022
ISBN 10: 1108843603 ISBN 13: 9781108843607
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 63,41
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Idioma: Inglés
Publicado por Cambridge University Press, 2022
ISBN 10: 1108843603 ISBN 13: 9781108843607
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 62,39
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por Cambridge University Press, 2022
ISBN 10: 1108843603 ISBN 13: 9781108843607
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 70,40
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por Cambridge University Press, 2022
ISBN 10: 1108843603 ISBN 13: 9781108843607
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
EUR 70,98
Cantidad disponible: 2 disponibles
Añadir al carritoHRD. Condición: New. New Book. Shipped from UK. Established seller since 2000.
Idioma: Inglés
Publicado por Cambridge University Press, 2022
ISBN 10: 1108843603 ISBN 13: 9781108843607
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
EUR 64,32
Cantidad disponible: 2 disponibles
Añadir al carritoHRD. Condición: New. New Book. Shipped from UK. Established seller since 2000.
Idioma: Inglés
Publicado por Cambridge University Press CUP, 2022
ISBN 10: 1108843603 ISBN 13: 9781108843607
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 73,21
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: Used. pp. 350 New edition niversity Press.
Idioma: Inglés
Publicado por Cambridge University Press, 2022
ISBN 10: 1108843603 ISBN 13: 9781108843607
Librería: Majestic Books, Hounslow, Reino Unido
EUR 69,74
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: Used. pp. 350.
Idioma: Inglés
Publicado por Cambridge University Press, 2022
ISBN 10: 1108843603 ISBN 13: 9781108843607
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 61,52
Cantidad disponible: 7 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por Cambridge University Press, 2022
ISBN 10: 1108843603 ISBN 13: 9781108843607
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 71,25
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: Used. pp. 350.
Idioma: Inglés
Publicado por Cambridge University Press 2022-03-31, 2022
ISBN 10: 1108843603 ISBN 13: 9781108843607
Librería: Chiron Media, Wallingford, Reino Unido
EUR 66,27
Cantidad disponible: 2 disponibles
Añadir al carritoHardcover. Condición: New.
Idioma: Inglés
Publicado por Cambridge University Press, 2022
ISBN 10: 1108843603 ISBN 13: 9781108843607
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 70,60
Cantidad disponible: 7 disponibles
Añadir al carritoCondición: New. In.
Idioma: Inglés
Publicado por Cambridge University Press 2022-03-31, 2022
ISBN 10: 1108843603 ISBN 13: 9781108843607
Librería: Chiron Media, Wallingford, Reino Unido
EUR 67,29
Cantidad disponible: 2 disponibles
Añadir al carritoHardcover. Condición: New.
Idioma: Inglés
Publicado por Cambridge University Press, 2022
ISBN 10: 1108843603 ISBN 13: 9781108843607
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 73,14
Cantidad disponible: 7 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Idioma: Inglés
Publicado por Cambridge University Press, 2022
ISBN 10: 1108843603 ISBN 13: 9781108843607
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
EUR 79,81
Cantidad disponible: 2 disponibles
Añadir al carritoCondición: New. 2022. New. Hardcover. . . . . .
Idioma: Inglés
Publicado por Cambridge University Pr. Mär 2022, 2022
ISBN 10: 1108843603 ISBN 13: 9781108843607
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 68,00
Cantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware -This book introduces machine learning for readers with some background in basic linear algebra, statistics, probability, and programming. In a coherent statistical framework it covers a selection of supervised machine learning methods, from the most fundamental (k-NN, decision trees, linear and logistic regression) to more advanced methods (deep neural networks, support vector machines, Gaussian processes, random forests and boosting), plus commonly-used unsupervised methods (generative modeling, k-means, PCA, autoencoders and generative adversarial networks). Careful explanations and pseudo-code are presented for all methods. The authors maintain a focus on the fundamentals by drawing connections between methods and discussing general concepts such as loss functions, maximum likelihood, the bias-variance decomposition, ensemble averaging, kernels and the Bayesian approach along with generally useful tools such as regularization, cross validation, evaluation metrics and optimization methods. The final chapters offer practical advice for solving real-world supervised machine learning problems and on ethical aspects of modern machine learning. 338 pp. Englisch.
Idioma: Inglés
Publicado por Cambridge University Pr. Mär 2022, 2022
ISBN 10: 1108843603 ISBN 13: 9781108843607
Librería: Rheinberg-Buch Andreas Meier eK, Bergisch Gladbach, Alemania
EUR 68,00
Cantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware -This book introduces machine learning for readers with some background in basic linear algebra, statistics, probability, and programming. In a coherent statistical framework it covers a selection of supervised machine learning methods, from the most fundamental (k-NN, decision trees, linear and logistic regression) to more advanced methods (deep neural networks, support vector machines, Gaussian processes, random forests and boosting), plus commonly-used unsupervised methods (generative modeling, k-means, PCA, autoencoders and generative adversarial networks). Careful explanations and pseudo-code are presented for all methods. The authors maintain a focus on the fundamentals by drawing connections between methods and discussing general concepts such as loss functions, maximum likelihood, the bias-variance decomposition, ensemble averaging, kernels and the Bayesian approach along with generally useful tools such as regularization, cross validation, evaluation metrics and optimization methods. The final chapters offer practical advice for solving real-world supervised machine learning problems and on ethical aspects of modern machine learning. 338 pp. Englisch.
Idioma: Inglés
Publicado por Cambridge University Pr. Mär 2022, 2022
ISBN 10: 1108843603 ISBN 13: 9781108843607
Librería: Wegmann1855, Zwiesel, Alemania
EUR 68,00
Cantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware -This book introduces machine learning for readers with some background in basic linear algebra, statistics, probability, and programming. In a coherent statistical framework it covers a selection of supervised machine learning methods, from the most fundamental (k-NN, decision trees, linear and logistic regression) to more advanced methods (deep neural networks, support vector machines, Gaussian processes, random forests and boosting), plus commonly-used unsupervised methods (generative modeling, k-means, PCA, autoencoders and generative adversarial networks). Careful explanations and pseudo-code are presented for all methods. The authors maintain a focus on the fundamentals by drawing connections between methods and discussing general concepts such as loss functions, maximum likelihood, the bias-variance decomposition, ensemble averaging, kernels and the Bayesian approach along with generally useful tools such as regularization, cross validation, evaluation metrics and optimization methods. The final chapters offer practical advice for solving real-world supervised machine learning problems and on ethical aspects of modern machine learning.
Idioma: Inglés
Publicado por Cambridge University Press, 2022
ISBN 10: 1108843603 ISBN 13: 9781108843607
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
EUR 98,83
Cantidad disponible: 2 disponibles
Añadir al carritoCondición: New. 2022. New. Hardcover. . . . . . Books ship from the US and Ireland.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 96,60
Cantidad disponible: 2 disponibles
Añadir al carritoHardcover. Condición: Brand New. 325 pages. 10.20x7.20x0.80 inches. In Stock.
Idioma: Inglés
Publicado por Cambridge University Press, 2022
ISBN 10: 1108843603 ISBN 13: 9781108843607
Librería: Speedyhen, Hertfordshire, Reino Unido
EUR 61,53
Cantidad disponible: 2 disponibles
Añadir al carritoCondición: NEW.
Idioma: Inglés
Publicado por Cambridge University Pr., 2022
ISBN 10: 1108843603 ISBN 13: 9781108843607
Librería: moluna, Greven, Alemania
EUR 62,09
Cantidad disponible: 2 disponibles
Añadir al carritoCondición: New. This coherent introduction to machine learning for readers with a background in basic linear algebra, statistics, probability, and programming is suitable for advanced BSc or MSc courses. It covers theory and practice of basic and advanced methods such as d.
Idioma: Inglés
Publicado por Cambridge University Press, Cambridge, 2022
ISBN 10: 1108843603 ISBN 13: 9781108843607
Librería: CitiRetail, Stevenage, Reino Unido
EUR 75,19
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. This book introduces machine learning for readers with some background in basic linear algebra, statistics, probability, and programming. In a coherent statistical framework it covers a selection of supervised machine learning methods, from the most fundamental (k-NN, decision trees, linear and logistic regression) to more advanced methods (deep neural networks, support vector machines, Gaussian processes, random forests and boosting), plus commonly-used unsupervised methods (generative modeling, k-means, PCA, autoencoders and generative adversarial networks). Careful explanations and pseudo-code are presented for all methods. The authors maintain a focus on the fundamentals by drawing connections between methods and discussing general concepts such as loss functions, maximum likelihood, the bias-variance decomposition, ensemble averaging, kernels and the Bayesian approach along with generally useful tools such as regularization, cross validation, evaluation metrics and optimization methods. The final chapters offer practical advice for solving real-world supervised machine learning problems and on ethical aspects of modern machine learning. This coherent introduction to machine learning for readers with a background in basic linear algebra, statistics, probability, and programming is suitable for advanced BSc or MSc courses. It covers theory and practice of basic and advanced methods such as deep learning, Gaussian processes, random forests, support vector machines and boosting. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Idioma: Inglés
Publicado por Cambridge University Pr. Mär 2022, 2022
ISBN 10: 1108843603 ISBN 13: 9781108843607
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 68,00
Cantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware -This book introduces machine learning for readers with some background in basic linear algebra, statistics, probability, and programming. In a coherent statistical framework it covers a selection of supervised machine learning methods, from the most fundamental (k-NN, decision trees, linear and logistic regression) to more advanced methods (deep neural networks, support vector machines, Gaussian processes, random forests and boosting), plus commonly-used unsupervised methods (generative modeling, k-means, PCA, autoencoders and generative adversarial networks). Careful explanations and pseudo-code are presented for all methods. The authors maintain a focus on the fundamentals by drawing connections between methods and discussing general concepts such as loss functions, maximum likelihood, the bias-variance decomposition, ensemble averaging, kernels and the Bayesian approach along with generally useful tools such as regularization, cross validation, evaluation metrics and optimization methods. The final chapters offer practical advice for solving real-world supervised machine learning problems and on ethical aspects of modern machine learning.Libri GmbH, Europaallee 1, 36244 Bad Hersfeld 338 pp. Englisch.
Idioma: Inglés
Publicado por Cambridge University Pr. Mär 2022, 2022
ISBN 10: 1108843603 ISBN 13: 9781108843607
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 75,54
Cantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware - This book introduces machine learning for readers with some background in basic linear algebra, statistics, probability, and programming. In a coherent statistical framework it covers a selection of supervised machine learning methods, from the most fundamental (k-NN, decision trees, linear and logistic regression) to more advanced methods (deep neural networks, support vector machines, Gaussian processes, random forests and boosting), plus commonly-used unsupervised methods (generative modeling, k-means, PCA, autoencoders and generative adversarial networks). Careful explanations and pseudo-code are presented for all methods. The authors maintain a focus on the fundamentals by drawing connections between methods and discussing general concepts such as loss functions, maximum likelihood, the bias-variance decomposition, ensemble averaging, kernels and the Bayesian approach along with generally useful tools such as regularization, cross validation, evaluation metrics and optimization methods. The final chapters offer practical advice for solving real-world supervised machine learning problems and on ethical aspects of modern machine learning.
Idioma: Inglés
Publicado por Cambridge University Press, Cambridge, 2022
ISBN 10: 1108843603 ISBN 13: 9781108843607
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
EUR 76,11
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. This book introduces machine learning for readers with some background in basic linear algebra, statistics, probability, and programming. In a coherent statistical framework it covers a selection of supervised machine learning methods, from the most fundamental (k-NN, decision trees, linear and logistic regression) to more advanced methods (deep neural networks, support vector machines, Gaussian processes, random forests and boosting), plus commonly-used unsupervised methods (generative modeling, k-means, PCA, autoencoders and generative adversarial networks). Careful explanations and pseudo-code are presented for all methods. The authors maintain a focus on the fundamentals by drawing connections between methods and discussing general concepts such as loss functions, maximum likelihood, the bias-variance decomposition, ensemble averaging, kernels and the Bayesian approach along with generally useful tools such as regularization, cross validation, evaluation metrics and optimization methods. The final chapters offer practical advice for solving real-world supervised machine learning problems and on ethical aspects of modern machine learning. This coherent introduction to machine learning for readers with a background in basic linear algebra, statistics, probability, and programming is suitable for advanced BSc or MSc courses. It covers theory and practice of basic and advanced methods such as deep learning, Gaussian processes, random forests, support vector machines and boosting. This item is printed on demand. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 67,87
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Brand New. 325 pages. 10.20x7.20x0.80 inches. In Stock. This item is printed on demand.