EUR 53,05
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 51,88
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
EUR 60,79
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 58,85
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
EUR 60,01
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
EUR 66,30
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Idioma: Inglés
Publicado por Springer Netherlands, Springer Netherlands Jun 2000, 2000
ISBN 10: 0792363795 ISBN 13: 9780792363798
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 53,49
Cantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware -In [Hardy and Williams, 1986] the authors exploited a very simple idea to obtain a linear congruence involving class numbers of imaginary quadratic fields modulo a certain power of 2. Their congruence provided a unified setting for many congruences proved previously by other authors using various means. The Hardy-Williams idea was as follows. Let d be the discriminant of a quadratic field. Suppose that d is odd and let d = PIP2 . . Pn be its unique decomposition into prime discriminants. Then, for any positive integer k coprime with d, the congruence holds trivially as each Legendre-Jacobi-Kronecker symbol (~) has the value + 1 or -1. Expanding this product gives ~ eld e:=l (mod4) where e runs through the positive and negative divisors of d and v (e) denotes the number of distinct prime factors of e. Summing this congruence for o 276 pp. Englisch.
Idioma: Inglés
Publicado por Springer Netherlands, Springer Netherlands, 2000
ISBN 10: 0792363795 ISBN 13: 9780792363798
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 59,97
Cantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - In [Hardy and Williams, 1986] the authors exploited a very simple idea to obtain a linear congruence involving class numbers of imaginary quadratic fields modulo a certain power of 2. Their congruence provided a unified setting for many congruences proved previously by other authors using various means. The Hardy-Williams idea was as follows. Let d be the discriminant of a quadratic field. Suppose that d is odd and let d = PIP2 . . Pn be its unique decomposition into prime discriminants. Then, for any positive integer k coprime with d, the congruence holds trivially as each Legendre-Jacobi-Kronecker symbol (~) has the value + 1 or -1. Expanding this product gives ~ eld e:=l (mod4) where e runs through the positive and negative divisors of d and v (e) denotes the number of distinct prime factors of e. Summing this congruence for o k Idl/8, gcd(k, d) = 1, gives ~ (-It(e) ~ (~) =:O(mod2n). eld o.
Idioma: Inglés
Publicado por Springer Netherlands Jun 2000, 2000
ISBN 10: 0792363795 ISBN 13: 9780792363798
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 53,49
Cantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In [Hardy and Williams, 1986] the authors exploited a very simple idea to obtain a linear congruence involving class numbers of imaginary quadratic fields modulo a certain power of 2. Their congruence provided a unified setting for many congruences proved previously by other authors using various means. The Hardy-Williams idea was as follows. Let d be the discriminant of a quadratic field. Suppose that d is odd and let d = PIP2 . . Pn be its unique decomposition into prime discriminants. Then, for any positive integer k coprime with d, the congruence holds trivially as each Legendre-Jacobi-Kronecker symbol (~) has the value + 1 or -1. Expanding this product gives ~ eld e:=l (mod4) where e runs through the positive and negative divisors of d and v (e) denotes the number of distinct prime factors of e. Summing this congruence for o k Idl/8, gcd(k, d) = 1, gives ~ (-It(e) ~ (~) =:O(mod2n). eld o 276 pp. Englisch.
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 68,04
Cantidad disponible: Más de 20 disponibles
Añadir al carritoHardback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days.
Librería: moluna, Greven, Alemania
EUR 48,37
Cantidad disponible: Más de 20 disponibles
Añadir al carritoGebunden. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. In [Hardy and Williams, 1986] the authors exploited a very simple idea to obtain a linear congruence involving class numbers of imaginary quadratic fields modulo a certain power of 2. Their congruence provided a unified setting for many congruences proved p.
Librería: preigu, Osnabrück, Alemania
EUR 50,25
Cantidad disponible: 5 disponibles
Añadir al carritoBuch. Condición: Neu. Congruences for L-Functions | Kenneth S. Williams (u. a.) | Buch | Einband - fest (Hardcover) | Englisch | 2000 | Springer Netherland | EAN 9780792363798 | Verantwortliche Person für die EU: Springer-Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, productsafety[at]springernature[dot]com | Anbieter: preigu Print on Demand.