Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 157,80
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 159,80
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
EUR 136,16
Cantidad disponible: Más de 20 disponibles
Añadir al carritoGebunden. Condición: New.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 207,37
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. pp. 660.
Idioma: Inglés
Publicado por Kluwer Academic Publishers, 1999
ISBN 10: 0792359240 ISBN 13: 9780792359241
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
EUR 200,50
Cantidad disponible: 15 disponibles
Añadir al carritoCondición: New. Presents chapters dealing with various aspects of combinatorial optimization, including optimization problems and algorithmic approaches for discrete problems. This book is suitable for those who use combinatorial optimization methods to model and solve problems. Editor(s): Du, Ding-Zhu; Pardalos, Panos M. Num Pages: 656 pages, biography. BIC Classification: PBT; PBV. Category: (P) Professional & Vocational; (UP) Postgraduate, Research & Scholarly; (UU) Undergraduate. Dimension: 234 x 156 x 34. Weight in Grams: 1094. . 1999. Hardback. . . . .
Idioma: Inglés
Publicado por Springer US, Springer US, 1999
ISBN 10: 0792359240 ISBN 13: 9780792359241
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 170,64
Cantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Combinatorial (or discrete) optimization is one of the most active fields in the interface of operations research, computer science, and applied math ematics. Combinatorial optimization problems arise in various applications, including communications network design, VLSI design, machine vision, air line crew scheduling, corporate planning, computer-aided design and man ufacturing, database query design, cellular telephone frequency assignment, constraint directed reasoning, and computational biology. Furthermore, combinatorial optimization problems occur in many diverse areas such as linear and integer programming, graph theory, artificial intelligence, and number theory. All these problems, when formulated mathematically as the minimization or maximization of a certain function defined on some domain, have a commonality of discreteness. Historically, combinatorial optimization starts with linear programming. Linear programming has an entire range of important applications including production planning and distribution, personnel assignment, finance, alloca tion of economic resources, circuit simulation, and control systems. Leonid Kantorovich and Tjalling Koopmans received the Nobel Prize (1975) for their work on the optimal allocation of resources. Two important discover ies, the ellipsoid method (1979) and interior point approaches (1984) both provide polynomial time algorithms for linear programming. These algo rithms have had a profound effect in combinatorial optimization. Many polynomial-time solvable combinatorial optimization problems are special cases of linear programming (e.g. matching and maximum flow). In addi tion, linear programming relaxations are often the basis for many approxi mation algorithms for solving NP-hard problems (e.g. dualheuristics).
Idioma: Inglés
Publicado por Kluwer Academic Publishers, 1999
ISBN 10: 0792359240 ISBN 13: 9780792359241
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
EUR 250,55
Cantidad disponible: 15 disponibles
Añadir al carritoCondición: New. Presents chapters dealing with various aspects of combinatorial optimization, including optimization problems and algorithmic approaches for discrete problems. This book is suitable for those who use combinatorial optimization methods to model and solve problems. Editor(s): Du, Ding-Zhu; Pardalos, Panos M. Num Pages: 656 pages, biography. BIC Classification: PBT; PBV. Category: (P) Professional & Vocational; (UP) Postgraduate, Research & Scholarly; (UU) Undergraduate. Dimension: 234 x 156 x 34. Weight in Grams: 1094. . 1999. Hardback. . . . . Books ship from the US and Ireland.
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 247,49
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Like New. Like New. book.
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 181,89
Cantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Combinatorial (or discrete) optimization is one of the most active fields in the interface of operations research, computer science, and applied math ematics. Combinatorial optimization problems arise in various applications, including communications network design, VLSI design, machine vision, air line crew scheduling, corporate planning, computer-aided design and man ufacturing, database query design, cellular telephone frequency assignment, constraint directed reasoning, and computational biology. Furthermore, combinatorial optimization problems occur in many diverse areas such as linear and integer programming, graph theory, artificial intelligence, and number theory. All these problems, when formulated mathematically as the minimization or maximization of a certain function defined on some domain, have a commonality of discreteness. Historically, combinatorial optimization starts with linear programming. Linear programming has an entire range of important applications including production planning and distribution, personnel assignment, finance, alloca tion of economic resources, circuit simulation, and control systems. Leonid Kantorovich and Tjalling Koopmans received the Nobel Prize (1975) for their work on the optimal allocation of resources. Two important discover ies, the ellipsoid method (1979) and interior point approaches (1984) both provide polynomial time algorithms for linear programming. These algo rithms have had a profound effect in combinatorial optimization. Many polynomial-time solvable combinatorial optimization problems are special cases of linear programming (e.g. matching and maximum flow). In addi tion, linear programming relaxations are often the basis for many approxi mation algorithms for solving NP-hard problems (e.g. dual heuristics). 660 pp. Englisch.
Librería: preigu, Osnabrück, Alemania
EUR 141,20
Cantidad disponible: 5 disponibles
Añadir al carritoBuch. Condición: Neu. Handbook of Combinatorial Optimization | Supplement Volume A | Ding-Zhu Du (u. a.) | Buch | viii | Englisch | 1999 | Springer | EAN 9780792359241 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 214,87
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand pp. 660 52:B&W 6.14 x 9.21in or 234 x 156mm (Royal 8vo) Case Laminate on White w/Gloss Lam.
Idioma: Inglés
Publicado por Springer New York, Springer US Okt 1999, 1999
ISBN 10: 0792359240 ISBN 13: 9780792359241
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 160,49
Cantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Combinatorial (or discrete) optimization is one of the most active fields in the interface of operations research, computer science, and applied math ematics. Combinatorial optimization problems arise in various applications, including communications network design, VLSI design, machine vision, air line crew scheduling, corporate planning, computer-aided design and man ufacturing, database query design, cellular telephone frequency assignment, constraint directed reasoning, and computational biology. Furthermore, combinatorial optimization problems occur in many diverse areas such as linear and integer programming, graph theory, artificial intelligence, and number theory. All these problems, when formulated mathematically as the minimization or maximization of a certain function defined on some domain, have a commonality of discreteness. Historically, combinatorial optimization starts with linear programming. Linear programming has an entire range of important applications including production planning and distribution, personnel assignment, finance, alloca tion of economic resources, circuit simulation, and control systems. Leonid Kantorovich and Tjalling Koopmans received the Nobel Prize (1975) for their work on the optimal allocation of resources. Two important discover ies, the ellipsoid method (1979) and interior point approaches (1984) both provide polynomial time algorithms for linear programming. These algo rithms have had a profound effect in combinatorial optimization. Many polynomial-time solvable combinatorial optimization problems are special cases of linear programming (e.g. matching and maximum flow). In addi tion, linear programming relaxations are often the basis for many approxi mation algorithms for solving NP-hard problems (e.g. dualheuristics).Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 660 pp. Englisch.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 220,84
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND pp. 660.