Idioma: Inglés
Publicado por Chapman and Hall/CRC (edition 1), 2022
ISBN 10: 0367540959 ISBN 13: 9780367540951
Librería: BooksRun, Philadelphia, PA, Estados Unidos de America
EUR 28,36
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Very Good. 1. It's a well-cared-for item that has seen limited use. The item may show minor signs of wear. All the text is legible, with all pages included. It may have slight markings and/or highlighting.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 59,32
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 60,26
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por Taylor & Francis Ltd, London, 2022
ISBN 10: 0367540959 ISBN 13: 9780367540951
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
EUR 62,56
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. Based on interdisciplinary research into "Directional Change", a new data-driven approach to financial data analysis, Detecting Regime Change in Computational Finance: Data Science, Machine Learning and Algorithmic Trading applies machine learning to financial market monitoring and algorithmic trading. Directional Change is a new way of summarising price changes in the market. Instead of sampling prices at fixed intervals (such as daily closing in time series), it samples prices when the market changes direction ("zigzags"). By sampling data in a different way, this book lays out concepts which enable the extraction of information that other market participants may not be able to see. The book includes a Foreword by Richard Olsen and explores the following topics: Data science: as an alternative to time series, price movements in a market can be summarised as directional changes Machine learning for regime change detection: historical regime changes in a market can be discovered by a Hidden Markov Model Regime characterisation: normal and abnormal regimes in historical data can be characterised using indicators defined under Directional Change Market Monitoring: by using historical characteristics of normal and abnormal regimes, one can monitor the market to detect whether the market regime has changed Algorithmic trading: regime tracking information can help us to design trading algorithmsIt will be of great interest to researchers in computational finance, machine learning and data science.About the AuthorsJun Chen received his PhD in computational finance from the Centre for Computational Finance and Economic Agents, University of Essex in 2019.Edward P K Tsang is an Emeritus Professor at the University of Essex, where he co-founded the Centre for Computational Finance and Economic Agents in 2002. Based on interdisciplinary research into "Directional Change", a new data-driven approach to financial data analysis, this book applies machine learning to financial market monitoring and algorithmic trading. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 59,38
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
EUR 58,24
Cantidad disponible: 2 disponibles
Añadir al carritoPAP. Condición: New. New Book. Shipped from UK. Established seller since 2000.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 60,15
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. 1st edition NO-PA16APR2015-KAP.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 67,65
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por Taylor and Francis Ltd, GB, 2022
ISBN 10: 0367540959 ISBN 13: 9780367540951
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
EUR 68,06
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: New. Based on interdisciplinary research into "Directional Change", a new data-driven approach to financial data analysis, Detecting Regime Change in Computational Finance: Data Science, Machine Learning and Algorithmic Trading applies machine learning to financial market monitoring and algorithmic trading. Directional Change is a new way of summarising price changes in the market. Instead of sampling prices at fixed intervals (such as daily closing in time series), it samples prices when the market changes direction ("zigzags"). By sampling data in a different way, this book lays out concepts which enable the extraction of information that other market participants may not be able to see. The book includes a Foreword by Richard Olsen and explores the following topics: Data science: as an alternative to time series, price movements in a market can be summarised as directional changes Machine learning for regime change detection: historical regime changes in a market can be discovered by a Hidden Markov Model Regime characterisation: normal and abnormal regimes in historical data can be characterised using indicators defined under Directional Change Market Monitoring: by using historical characteristics of normal and abnormal regimes, one can monitor the market to detect whether the market regime has changed Algorithmic trading: regime tracking information can help us to design trading algorithmsIt will be of great interest to researchers in computational finance, machine learning and data science.About the AuthorsJun Chen received his PhD in computational finance from the Centre for Computational Finance and Economic Agents, University of Essex in 2019.Edward P K Tsang is an Emeritus Professor at the University of Essex, where he co-founded the Centre for Computational Finance and Economic Agents in 2002.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 54,43
Cantidad disponible: 2 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por Chapman and Hall/CRC 2022-05-30, 2022
ISBN 10: 0367540959 ISBN 13: 9780367540951
Librería: Chiron Media, Wallingford, Reino Unido
EUR 54,54
Cantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: New.
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 61,24
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback / softback. Condición: New. New copy - Usually dispatched within 4 working days.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 62,18
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Idioma: Inglés
Publicado por Chapman and Hall/CRC 2022-05, 2022
ISBN 10: 0367540959 ISBN 13: 9780367540951
Librería: Chiron Media, Wallingford, Reino Unido
EUR 63,11
Cantidad disponible: 10 disponibles
Añadir al carritoPF. Condición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 62,10
Cantidad disponible: 2 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Original o primera edición
EUR 70,29
Cantidad disponible: 2 disponibles
Añadir al carritoCondición: New. 2022. 1st Edition. Paperback. . . . . .
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
EUR 85,39
Cantidad disponible: 2 disponibles
Añadir al carritoCondición: New. 2022. 1st Edition. Paperback. . . . . . Books ship from the US and Ireland.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 86,35
Cantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 164 pages. 9.25x6.25x0.25 inches. In Stock.
EUR 54,45
Cantidad disponible: 2 disponibles
Añadir al carritoCondición: NEW.
EUR 67,33
Cantidad disponible: 2 disponibles
Añadir al carritoCondición: New. Jun Chen received his PhD in computational finance from the Centre for Computational Finance and Economic Agents, University of Essex in 2019.Edward P K Tsang is an Emeritus Professor at the University of Essex, w.
Idioma: Inglés
Publicado por Taylor & Francis Ltd, London, 2022
ISBN 10: 0367540959 ISBN 13: 9780367540951
Librería: AussieBookSeller, Truganina, VIC, Australia
EUR 109,10
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. Based on interdisciplinary research into "Directional Change", a new data-driven approach to financial data analysis, Detecting Regime Change in Computational Finance: Data Science, Machine Learning and Algorithmic Trading applies machine learning to financial market monitoring and algorithmic trading. Directional Change is a new way of summarising price changes in the market. Instead of sampling prices at fixed intervals (such as daily closing in time series), it samples prices when the market changes direction ("zigzags"). By sampling data in a different way, this book lays out concepts which enable the extraction of information that other market participants may not be able to see. The book includes a Foreword by Richard Olsen and explores the following topics: Data science: as an alternative to time series, price movements in a market can be summarised as directional changes Machine learning for regime change detection: historical regime changes in a market can be discovered by a Hidden Markov Model Regime characterisation: normal and abnormal regimes in historical data can be characterised using indicators defined under Directional Change Market Monitoring: by using historical characteristics of normal and abnormal regimes, one can monitor the market to detect whether the market regime has changed Algorithmic trading: regime tracking information can help us to design trading algorithmsIt will be of great interest to researchers in computational finance, machine learning and data science.About the AuthorsJun Chen received his PhD in computational finance from the Centre for Computational Finance and Economic Agents, University of Essex in 2019.Edward P K Tsang is an Emeritus Professor at the University of Essex, where he co-founded the Centre for Computational Finance and Economic Agents in 2002. Based on interdisciplinary research into "Directional Change", a new data-driven approach to financial data analysis, this book applies machine learning to financial market monitoring and algorithmic trading. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Idioma: Inglés
Publicado por Taylor and Francis Ltd, GB, 2022
ISBN 10: 0367540959 ISBN 13: 9780367540951
Librería: Rarewaves.com UK, London, Reino Unido
EUR 62,93
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: New. Based on interdisciplinary research into "Directional Change", a new data-driven approach to financial data analysis, Detecting Regime Change in Computational Finance: Data Science, Machine Learning and Algorithmic Trading applies machine learning to financial market monitoring and algorithmic trading. Directional Change is a new way of summarising price changes in the market. Instead of sampling prices at fixed intervals (such as daily closing in time series), it samples prices when the market changes direction ("zigzags"). By sampling data in a different way, this book lays out concepts which enable the extraction of information that other market participants may not be able to see. The book includes a Foreword by Richard Olsen and explores the following topics: Data science: as an alternative to time series, price movements in a market can be summarised as directional changes Machine learning for regime change detection: historical regime changes in a market can be discovered by a Hidden Markov Model Regime characterisation: normal and abnormal regimes in historical data can be characterised using indicators defined under Directional Change Market Monitoring: by using historical characteristics of normal and abnormal regimes, one can monitor the market to detect whether the market regime has changed Algorithmic trading: regime tracking information can help us to design trading algorithmsIt will be of great interest to researchers in computational finance, machine learning and data science.About the AuthorsJun Chen received his PhD in computational finance from the Centre for Computational Finance and Economic Agents, University of Essex in 2019.Edward P K Tsang is an Emeritus Professor at the University of Essex, where he co-founded the Centre for Computational Finance and Economic Agents in 2002.
Librería: preigu, Osnabrück, Alemania
EUR 75,30
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Detecting Regime Change in Computational Finance | Data Science, Machine Learning and Algorithmic Trading | Jun Chen (u. a.) | Taschenbuch | Einband - flex.(Paperback) | Englisch | 2022 | Chapman and Hall/CRC | EAN 9780367540951 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 57,66
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand This item is printed on demand.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 60,08
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 71,39
Cantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 164 pages. 9.25x6.25x0.25 inches. In Stock. This item is printed on demand.
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 67,38
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Based on interdisciplinary research into 'Directional Change', a new data-driven approach to financial data analysis, this book applies machine learning to financial market monitoring and algorithmic trading.