Librería: Textbooks_Source, Columbia, MO, Estados Unidos de America
EUR 52,89
Cantidad disponible: 8 disponibles
Añadir al carritohardcover. Condición: New. 2nd Edition. Ships in a BOX from Central Missouri! UPS shipping for most packages, (Priority Mail for AK/HI/APO/PO Boxes).
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 98,49
Cantidad disponible: 6 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 115,22
Cantidad disponible: 6 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por Taylor & Francis Group, 2021
ISBN 10: 0367366517 ISBN 13: 9780367366513
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 114,05
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 116,82
Cantidad disponible: 6 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 116,47
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 118,03
Cantidad disponible: 1 disponibles
Añadir al carritoHardback. Condición: New. New copy - Usually dispatched within 4 working days.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 132,10
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por Taylor & Francis Ltd, London, 2021
ISBN 10: 0367366517 ISBN 13: 9780367366513
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
EUR 133,83
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. Bayesian Networks: With Examples in R, Second Edition introduces Bayesian networks using a hands-on approach. Simple yet meaningful examples illustrate each step of the modelling process and discuss side by side the underlying theory and its application using R code. The examples start from the simplest notions and gradually increase in complexity. In particular, this new edition contains significant new material on topics from modern machine-learning practice: dynamic networks, networks with heterogeneous variables, and model validation.The first three chapters explain the whole process of Bayesian network modelling, from structure learning to parameter learning to inference. These chapters cover discrete, Gaussian, and conditional Gaussian Bayesian networks. The following two chapters delve into dynamic networks (to model temporal data) and into networks including arbitrary random variables (using Stan). The book then gives a concise but rigorous treatment of the fundamentals of Bayesian networks and offers an introduction to causal Bayesian networks. It also presents an overview of R packages and other software implementing Bayesian networks. The final chapter evaluates two real-world examples: a landmark causal protein-signalling network published in Science and a probabilistic graphical model for predicting the composition of different body parts.Covering theoretical and practical aspects of Bayesian networks, this book provides you with an introductory overview of the field. It gives you a clear, practical understanding of the key points behind this modelling approach and, at the same time, it makes you familiar with the most relevant packages used to implement real-world analyses in R. The examples covered in the book span several application fields, data-driven models and expert systems, probabilistic and causal perspectives, thus giving you a starting point to work in a variety of scenarios.Online supplementary materials include the data sets and the code used in the book, which will all be made available from The book introduces Bayesian networks using simple yet meaningful examples. Discrete Bayesian networks are described first followed by Gaussian Bayesian networks and mixed networks. All steps in learning are illustrated with R code. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 118,16
Cantidad disponible: 6 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 131,39
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
EUR 139,11
Cantidad disponible: 2 disponibles
Añadir al carritoCondición: New. 2021. 2nd Edition. hardcover. . . . . .
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 157,96
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: New. New. book.
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
EUR 174,22
Cantidad disponible: 2 disponibles
Añadir al carritoCondición: New. 2021. 2nd Edition. hardcover. . . . . . Books ship from the US and Ireland.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 173,33
Cantidad disponible: 2 disponibles
Añadir al carritoHardcover. Condición: Brand New. 2nd edition. 258 pages. 9.50x6.25x1.00 inches. In Stock.
Idioma: Inglés
Publicado por Taylor & Francis Ltd, London, 2021
ISBN 10: 0367366517 ISBN 13: 9780367366513
Librería: AussieBookSeller, Truganina, VIC, Australia
EUR 220,36
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. Bayesian Networks: With Examples in R, Second Edition introduces Bayesian networks using a hands-on approach. Simple yet meaningful examples illustrate each step of the modelling process and discuss side by side the underlying theory and its application using R code. The examples start from the simplest notions and gradually increase in complexity. In particular, this new edition contains significant new material on topics from modern machine-learning practice: dynamic networks, networks with heterogeneous variables, and model validation.The first three chapters explain the whole process of Bayesian network modelling, from structure learning to parameter learning to inference. These chapters cover discrete, Gaussian, and conditional Gaussian Bayesian networks. The following two chapters delve into dynamic networks (to model temporal data) and into networks including arbitrary random variables (using Stan). The book then gives a concise but rigorous treatment of the fundamentals of Bayesian networks and offers an introduction to causal Bayesian networks. It also presents an overview of R packages and other software implementing Bayesian networks. The final chapter evaluates two real-world examples: a landmark causal protein-signalling network published in Science and a probabilistic graphical model for predicting the composition of different body parts.Covering theoretical and practical aspects of Bayesian networks, this book provides you with an introductory overview of the field. It gives you a clear, practical understanding of the key points behind this modelling approach and, at the same time, it makes you familiar with the most relevant packages used to implement real-world analyses in R. The examples covered in the book span several application fields, data-driven models and expert systems, probabilistic and causal perspectives, thus giving you a starting point to work in a variety of scenarios.Online supplementary materials include the data sets and the code used in the book, which will all be made available from The book introduces Bayesian networks using simple yet meaningful examples. Discrete Bayesian networks are described first followed by Gaussian Bayesian networks and mixed networks. All steps in learning are illustrated with R code. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 98,14
Cantidad disponible: 5 disponibles
Añadir al carritoHardback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days.
Idioma: Inglés
Publicado por Taylor & Francis Group, 2021
ISBN 10: 0367366517 ISBN 13: 9780367366513
Librería: Majestic Books, Hounslow, Reino Unido
EUR 113,28
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand.
Idioma: Inglés
Publicado por Taylor & Francis Group, 2021
ISBN 10: 0367366517 ISBN 13: 9780367366513
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 117,45
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
EUR 142,95
Cantidad disponible: Más de 20 disponibles
Añadir al carritoHRD. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
EUR 136,18
Cantidad disponible: Más de 20 disponibles
Añadir al carritoHRD. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Librería: moluna, Greven, Alemania
EUR 102,65
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Marco Scutari is a Senior Lecturer at Istituto Dalle Molle di Studisull Intelligenza Artificiale (IDSIA), Switzerland. He has held positions in Statistics, Statistical Genetics and Machine Learning in the UK and Switzerland since complet.
Librería: preigu, Osnabrück, Alemania
EUR 143,95
Cantidad disponible: 5 disponibles
Añadir al carritoBuch. Condición: Neu. Bayesian Networks | With Examples in R | Marco Scutari (u. a.) | Buch | Einband - fest (Hardcover) | Englisch | 2021 | Chapman and Hall/CRC | EAN 9780367366513 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu Print on Demand.
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 172,02
Cantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The book introduces Bayesian networks using simple yet meaningful examples. Discrete Bayesian networks are described first followed by Gaussian Bayesian networks and mixed networks. All steps in learning are illustrated with R code.