Idioma: Inglés
Publicado por Morgan & Claypool Publishers, 2011
ISBN 10: 1608456161 ISBN 13: 9781608456161
Librería: Half Price Books Inc., Dallas, TX, Estados Unidos de America
EUR 24,89
Cantidad disponible: 1 disponibles
Añadir al carritopaperback. Condición: Very Good. Connecting readers with great books since 1972! Used books may not include companion materials, and may have some shelf wear or limited writing. We ship orders daily and Customer Service is our top priority!
EUR 26,19
Cantidad disponible: 1 disponibles
Añadir al carritoSoft Cover. Condición: Good. Ex-library with the usual features. Library label on front cover. The interior is clean and tight. Binding is good. Cover shows light wear. Ex-Library.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 33,17
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 41,96
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. 1st edition NO-PA16APR2015-KAP.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 33,41
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In English.
Idioma: Inglés
Publicado por Springer International Publishing, 2011
ISBN 10: 3031004248 ISBN 13: 9783031004247
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 29,95
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Support Vectors Machines have become a well established tool within machine learning. They work well in practice and have now been used across a wide range of applications from recognizing hand-written digits, to face identification, text categorisation, bioinformatics, and database marketing. In this book we give an introductory overview of this subject. We start with a simple Support Vector Machine for performing binary classification before considering multi-class classification and learning in the presence of noise. We show that this framework can be extended to many other scenarios such as prediction with real-valued outputs, novelty detection and the handling of complex output structures such as parse trees. Finally, we give an overview of the main types of kernels which are used in practice and how to learn and make predictions from multiple types of input data. Table of Contents: Support Vector Machines for Classification / Kernel-based Models / Learning with Kernels.
Publicado por Published 1979 by Shanghai wen hua chu ban She, 1979
Librería: Pali, Roma, RM, Italia
EUR 30,00
Cantidad disponible: 1 disponibles
Añadir al carritoPortfolio. Condición: Fine. 1 portfolio ([24] p. of plates) : col. ill. ; 23 x 27 cm. recepies in chinese and english with artistic photos.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 40,07
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 41,75
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.
Idioma: Inglés
Publicado por Springer International Publishing Feb 2011, 2011
ISBN 10: 3031004248 ISBN 13: 9783031004247
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 29,95
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Support Vectors Machines have become a well established tool within machine learning. They work well in practice and have now been used across a wide range of applications from recognizing hand-written digits, to face identification, text categorisation, bioinformatics, and database marketing. In this book we give an introductory overview of this subject. We start with a simple Support Vector Machine for performing binary classification before considering multi-class classification and learning in the presence of noise. We show that this framework can be extended to many other scenarios such as prediction with real-valued outputs, novelty detection and the handling of complex output structures such as parse trees. Finally, we give an overview of the main types of kernels which are used in practice and how to learn and make predictions from multiple types of input data. Table of Contents: Support Vector Machines for Classification / Kernel-based Models / Learning with Kernels 96 pp. Englisch.
Idioma: Inglés
Publicado por Springer International Publishing, 2011
ISBN 10: 3031004248 ISBN 13: 9783031004247
Librería: moluna, Greven, Alemania
EUR 28,42
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Dr. Colin Campbell holds a BSc degree in physics from Imperial College, London, and a PhD in mathematics from King s College, London. He joined the Faculty of Engineering at the University of Bristol in 1990 where he is currently a Reader. His main interest.
Idioma: Inglés
Publicado por Springer Nature Switzerland, Springer Feb 2011, 2011
ISBN 10: 3031004248 ISBN 13: 9783031004247
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 29,95
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Support Vectors Machines have become a well established tool within machine learning. They work well in practice and have now been used across a wide range of applications from recognizing hand-written digits, to face identification, text categorisation, bioinformatics, and database marketing. In this book we give an introductory overview of this subject. We start with a simple Support Vector Machine for performing binary classification before considering multi-class classification and learning in the presence of noise. We show that this framework can be extended to many other scenarios such as prediction with real-valued outputs, novelty detection and the handling of complex output structures such as parse trees. Finally, we give an overview of the main types of kernels which are used in practice and how to learn and make predictions from multiple types of input data. Table of Contents: Support Vector Machines for Classification / Kernel-based Models / Learning with KernelsSpringer Nature c/o IBS, Benzstrasse 21, 48619 Heek 96 pp. Englisch.