Idioma: Inglés
Publicado por Wichita Eagle & Beacon Pub Co, 1994
ISBN 10: 1880652382 ISBN 13: 9781880652381
Librería: ThriftBooks-Dallas, Dallas, TX, Estados Unidos de America
EUR 8,51
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Very Good. No Jacket. May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less.
Idioma: Inglés
Publicado por CreateSpace Independent Publishing Platform, 2015
ISBN 10: 1512156590 ISBN 13: 9781512156591
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 7,11
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Smith Family Bookstore Downtown, Eugene, OR, Estados Unidos de America
EUR 42,85
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Very Good. Text clean and unmarked. Binding tight. Boards have light wear. Edges of pages have light wear.
Librería: Munster & Company LLC, ABAA/ILAB, Corvallis, OR, Estados Unidos de America
Original o primera edición
EUR 54,84
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: Good. Birkhauser, 1992. First printing with full number line; cover very lightly rubbed/bumped; edges very faintly soiled; faint pencil erasures at ffep; binding tight; cover, edges and interior intact and clean, except where noted. hardcover. Good.
Publicado por O. V Portenier, 1993
Librería: Ocean Books, Dacula, GA, Estados Unidos de America
EUR 34,27
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: As New. Signed by author on first page. Very minor wear to cover edges.
EUR 24,50
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Ex-library with stamp and library-signature in good condition, some traces of use. 28 ANG 9780817636302 Sprache: Englisch Gewicht in Gramm: 550.
Publicado por New York, 1933
Librería: Wissenschaftliches Antiquariat Köln Dr. Sebastian Peters UG, Köln, Alemania
EUR 35,00
Cantidad disponible: 1 disponibles
Añadir al carritoBroschur. Condición: gut. VIII S., 1 Bl., 109 S., Tab., 23 cm, Bibliotheksexemplar, Ecke geknickt. Sprache: Englisch.
EUR 24,75
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: Good.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 100,92
Cantidad disponible: 15 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por Springer-Verlag New York Inc., New York, 2012
ISBN 10: 1461267331 ISBN 13: 9781461267331
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
EUR 103,19
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. In topological measure theory, Radon measures are the most important objects. In the context of locally compact spaces, there are two equivalent canonical definitions. As a set function, a Radon measure is an inner compact regular Borel measure, finite on compact sets. As a functional, it is simply a positive linear form, defined on the vector lattice of continuous real-valued functions with compact support. During the last few decades, in particular because of the developments of modem probability theory and mathematical physics, attention has been focussed on measures on general topological spaces which are no longer locally compact, e.g. spaces of continuous functions or Schwartz distributions. For a Radon measure on an arbitrary Hausdorff space, essentially three equivalent definitions have been proposed: As a set function, it was defined by L. Schwartz as an inner compact regular Borel measure which is locally bounded. G. Choquet considered it as a strongly additive right continuous content on the lattice of compact subsets. Following P.A. Meyer, N. Bourbaki defined a Radon measure as a locally uniformly bounded family of compatible positive linear forms, each defined on the vector lattice of continuous functions on some compact subset. As a set function, a Radon measure is an inner compact regular Borel measure, finite on compact sets. Bourbaki defined a Radon measure as a locally uniformly bounded family of compatible positive linear forms, each defined on the vector lattice of continuous functions on some compact subset. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 99,78
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 100,18
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 111,72
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 112,10
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 136,79
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. pp. 344.
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
EUR 130,33
Cantidad disponible: 15 disponibles
Añadir al carritoCondición: New. 2012. Paperback. . . . . .
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
EUR 137,17
Cantidad disponible: 15 disponibles
Añadir al carritoCondición: New. 1992. Hardcover. . . . . .
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
EUR 156,80
Cantidad disponible: 15 disponibles
Añadir al carritoCondición: New. 2012. Paperback. . . . . . Books ship from the US and Ireland.
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
EUR 165,09
Cantidad disponible: 15 disponibles
Añadir al carritoCondición: New. 1992. Hardcover. . . . . . Books ship from the US and Ireland.
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 114,36
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - In topological measure theory, Radon measures are the most important objects. In the context of locally compact spaces, there are two equivalent canonical definitions. As a set function, a Radon measure is an inner compact regular Borel measure, finite on compact sets. As a functional, it is simply a positive linear form, defined on the vector lattice of continuous real-valued functions with compact support. During the last few decades, in particular because of the developments of modem probability theory and mathematical physics, attention has been focussed on measures on general topological spaces which are no longer locally compact, e.g. spaces of continuous functions or Schwartz distributions. For a Radon measure on an arbitrary Hausdorff space, essentially three equivalent definitions have been proposed: As a set function, it was defined by L. Schwartz as an inner compact regular Borel measure which is locally bounded. G. Choquet considered it as a strongly additive right continuous content on the lattice of compact subsets. Following P.A. Meyer, N. Bourbaki defined a Radon measure as a locally uniformly bounded family of compatible positive linear forms, each defined on the vector lattice of continuous functions on some compact subset.
Idioma: Inglés
Publicado por Birkhäuser Boston, Birkhäuser Boston, 1992
ISBN 10: 0817636307 ISBN 13: 9780817636302
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 114,36
Cantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - In topological measure theory, Radon measures are the most important objects. In the context of locally compact spaces, there are two equivalent canonical definitions. As a set function, a Radon measure is an inner compact regular Borel measure, finite on compact sets. As a functional, it is simply a positive linear form, defined on the vector lattice of continuous real-valued functions with compact support. During the last few decades, in particular because of the developments of modem probability theory and mathematical physics, attention has been focussed on measures on general topological spaces which are no longer locally compact, e.g. spaces of continuous functions or Schwartz distributions. For a Radon measure on an arbitrary Hausdorff space, essentially three equivalent definitions have been proposed: As a set function, it was defined by L. Schwartz as an inner compact regular Borel measure which is locally bounded. G. Choquet considered it as a strongly additive right continuous content on the lattice of compact subsets. Following P.A. Meyer, N. Bourbaki defined a Radon measure as a locally uniformly bounded family of compatible positive linear forms, each defined on the vector lattice of continuous functions on some compact subset.
Librería: Buchpark, Trebbin, Alemania
EUR 72,60
Cantidad disponible: 2 disponibles
Añadir al carritoCondición: Sehr gut. Zustand: Sehr gut | Seiten: 334 | Sprache: Englisch | Produktart: Bücher | Keine Beschreibung verfügbar.
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 162,31
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Like New. Like New. book.
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 170,61
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Like New. Like New. book.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 192,22
Cantidad disponible: 15 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
EUR 210,15
Cantidad disponible: 17 disponibles
Añadir al carritoCondición: New.
EUR 208,67
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
EUR 209,08
Cantidad disponible: 17 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por Springer-Verlag New York Inc., New York, 2012
ISBN 10: 1461267331 ISBN 13: 9781461267331
Librería: AussieBookSeller, Truganina, VIC, Australia
EUR 198,63
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. In topological measure theory, Radon measures are the most important objects. In the context of locally compact spaces, there are two equivalent canonical definitions. As a set function, a Radon measure is an inner compact regular Borel measure, finite on compact sets. As a functional, it is simply a positive linear form, defined on the vector lattice of continuous real-valued functions with compact support. During the last few decades, in particular because of the developments of modem probability theory and mathematical physics, attention has been focussed on measures on general topological spaces which are no longer locally compact, e.g. spaces of continuous functions or Schwartz distributions. For a Radon measure on an arbitrary Hausdorff space, essentially three equivalent definitions have been proposed: As a set function, it was defined by L. Schwartz as an inner compact regular Borel measure which is locally bounded. G. Choquet considered it as a strongly additive right continuous content on the lattice of compact subsets. Following P.A. Meyer, N. Bourbaki defined a Radon measure as a locally uniformly bounded family of compatible positive linear forms, each defined on the vector lattice of continuous functions on some compact subset. As a set function, a Radon measure is an inner compact regular Borel measure, finite on compact sets. Bourbaki defined a Radon measure as a locally uniformly bounded family of compatible positive linear forms, each defined on the vector lattice of continuous functions on some compact subset. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Idioma: Inglés
Publicado por Wolters Kluwer Health 2023-10-09, 2023
ISBN 10: 1975192648 ISBN 13: 9781975192648
Librería: Chiron Media, Wallingford, Reino Unido
EUR 221,41
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: New.