Publicado por Taylor & Francis Ltd, London, 2025
ISBN 10: 1032471638 ISBN 13: 9781032471631
Idioma: Inglés
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
EUR 73,26
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. Mobile, wearable, and self-driving telephones are just a few examples of modern distributed networks that generate enormous amount of information every day. Due to the growing computing capacity of these devices as well as concerns over the transfer of private information, it has become important to process the part of the data locally by moving the learning methods and computing to the border of devices. Federated learning has developed as a model of education in these situations. Federated learning (FL) is an expert form of decentralized machine learning (ML). It is essential in areas like privacy, large-scale machine education and distribution. It is also based on the current stage of ICT and new hardware technology and is the next generation of artificial intelligence (AI). In FL, central ML model is built with all the data available in a centralised environment in the traditional machine learning. It works without problems when the predictions can be served by a central server. Users require fast responses in mobile computing, but the model processing happens at the sight of the server, thus taking too long. The model can be placed in the end-user device, but continuous learning is a challenge to overcome, as models are programmed in a complete dataset and the end-user device lacks access to the entire data package. Another challenge with traditional machine learning is that user data is aggregated at a central location where it violates local privacy policies laws and make the data more vulnerable to data violation. This book provides a comprehensive approach in federated learning for various aspects. Federated learning is a Distributed Machine Learning model that has been used in many applications today. Most edge devices can execute models with local dataset since their computation power is unutilized. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 73,27
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 68,16
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 76,80
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New. 1st edition NO-PA16APR2015-KAP.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 78,14
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New.
Publicado por Taylor & Francis Ltd, London, 2025
ISBN 10: 1032471638 ISBN 13: 9781032471631
Idioma: Inglés
Librería: AussieBookSeller, Truganina, VIC, Australia
EUR 63,06
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. Mobile, wearable, and self-driving telephones are just a few examples of modern distributed networks that generate enormous amount of information every day. Due to the growing computing capacity of these devices as well as concerns over the transfer of private information, it has become important to process the part of the data locally by moving the learning methods and computing to the border of devices. Federated learning has developed as a model of education in these situations. Federated learning (FL) is an expert form of decentralized machine learning (ML). It is essential in areas like privacy, large-scale machine education and distribution. It is also based on the current stage of ICT and new hardware technology and is the next generation of artificial intelligence (AI). In FL, central ML model is built with all the data available in a centralised environment in the traditional machine learning. It works without problems when the predictions can be served by a central server. Users require fast responses in mobile computing, but the model processing happens at the sight of the server, thus taking too long. The model can be placed in the end-user device, but continuous learning is a challenge to overcome, as models are programmed in a complete dataset and the end-user device lacks access to the entire data package. Another challenge with traditional machine learning is that user data is aggregated at a central location where it violates local privacy policies laws and make the data more vulnerable to data violation. This book provides a comprehensive approach in federated learning for various aspects. Federated learning is a Distributed Machine Learning model that has been used in many applications today. Most edge devices can execute models with local dataset since their computation power is unutilized. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 96,32
Cantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 362 pages. 9.18x6.12x9.21 inches. In Stock.
EUR 118,86
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service.
Publicado por Taylor & Francis Ltd, London, 2025
ISBN 10: 1032471638 ISBN 13: 9781032471631
Idioma: Inglés
Librería: CitiRetail, Stevenage, Reino Unido
EUR 78,61
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. Mobile, wearable, and self-driving telephones are just a few examples of modern distributed networks that generate enormous amount of information every day. Due to the growing computing capacity of these devices as well as concerns over the transfer of private information, it has become important to process the part of the data locally by moving the learning methods and computing to the border of devices. Federated learning has developed as a model of education in these situations. Federated learning (FL) is an expert form of decentralized machine learning (ML). It is essential in areas like privacy, large-scale machine education and distribution. It is also based on the current stage of ICT and new hardware technology and is the next generation of artificial intelligence (AI). In FL, central ML model is built with all the data available in a centralised environment in the traditional machine learning. It works without problems when the predictions can be served by a central server. Users require fast responses in mobile computing, but the model processing happens at the sight of the server, thus taking too long. The model can be placed in the end-user device, but continuous learning is a challenge to overcome, as models are programmed in a complete dataset and the end-user device lacks access to the entire data package. Another challenge with traditional machine learning is that user data is aggregated at a central location where it violates local privacy policies laws and make the data more vulnerable to data violation. This book provides a comprehensive approach in federated learning for various aspects. Federated learning is a Distributed Machine Learning model that has been used in many applications today. Most edge devices can execute models with local dataset since their computation power is unutilized. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 175,83
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 174,63
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. 1st edition NO-PA16APR2015-KAP.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 177,88
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New.
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 168,90
Cantidad disponible: 1 disponibles
Añadir al carritoHardback. Condición: New. New copy - Usually dispatched within 4 working days. 830.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 183,09
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 183,08
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 201,19
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 186,59
Cantidad disponible: 1 disponibles
Añadir al carritopaperback. Condición: New. New. book.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 207,41
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 250,99
Cantidad disponible: 2 disponibles
Añadir al carritoHardcover. Condición: Brand New. 362 pages. 9.19x6.13x0.81 inches. In Stock.
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
EUR 78,65
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPAP. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
EUR 73,26
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPAP. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Librería: preigu, Osnabrück, Alemania
EUR 111,95
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Handbook on Federated Learning | Advances, Applications and Opportunities | Saravanan Krishnan (u. a.) | Taschenbuch | Einband - flex.(Paperback) | Englisch | 2025 | CRC Press | EAN 9781032471631 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu Print on Demand.
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
EUR 191,67
Cantidad disponible: Más de 20 disponibles
Añadir al carritoHRD. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
EUR 201,29
Cantidad disponible: Más de 20 disponibles
Añadir al carritoHRD. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 184,58
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.
Librería: moluna, Greven, Alemania
EUR 202,91
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Saravanan Krishnan is working as Associate Professor at the Department of Computer Science & Engineering, College of Engineering, Guindy, Anna University, Tirunelveli, India. He has published papers in 14 international conferences and 30 reput.
Librería: preigu, Osnabrück, Alemania
EUR 210,45
Cantidad disponible: 5 disponibles
Añadir al carritoBuch. Condición: Neu. Handbook on Federated Learning | Advances, Applications and Opportunities | Saravanan Krishnan (u. a.) | Buch | Einband - fest (Hardcover) | Englisch | 2023 | CRC Press | EAN 9781032471624 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu Print on Demand.
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 251,39
Cantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Federated learning is a Distributed Machine Learning model that has been used in many applications today. Most edge devices can execute models with local dataset since their computation power is unutilized.