Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 47,39
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 49,05
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 49,30
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 56,27
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 46,67
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Chiron Media, Wallingford, Reino Unido
EUR 44,01
Cantidad disponible: 10 disponibles
Añadir al carritoPF. Condición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 46,66
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 52,61
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Idioma: Inglés
Publicado por Cuvillier, Cuvillier Aug 2020, 2020
ISBN 10: 373697258X ISBN 13: 9783736972582
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 59,88
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -Road maintenance has traditionally been a time consuming, expensive, and manual process. Timely maintenance of roads helps in lowering rehabilitation costs, accidents, environmental pollution, while facilitating increased connectivity, trade, and growth. Easily acquirable front-view scene images are seen to be used lately for infrastructure management and road maintenance as they provide quicker, low-cost, and flexible solutions. Such scene images can easily be acquired using standard commodity cameras. In this dissertation, machine learning based approaches have been developed to analyze front-view scene images for detecting cracks automatically on road surfaces across different locations and under various conditions. This work thus contributes toward automated approaches to detect different kinds of cracks on road surfaces, thereby proposing a low-cost solution to road maintenance practices. As a result, different components are developed in this work which are sketched together to form a Decision Support System for the task of crack detection. In this study primarily three algorithmic approaches have been developed. Firstly, an unsupervised graph-based hierarchical clustering technique for road area segmentation has been developed, thus helping in detecting the road area in scene images. Secondly, a classifier and superpixel based supervised learning approach consisting of systematically identifying relevant features for detecting superpixels containing cracks has been developed. Thirdly, an unsupervised learning approach consisting of Gamma Mixture Fuzzy Model based clustering technique and keypoint matching mechanisms have been designed in this work for detecting which road pixels are crack pixels in images. Finally, this study integrates the findings and approaches to propose a Decision Support System for crack detection on road surfaces of easily acquirable front-view scene images. Evaluations performed on an experimentally collected diverse front-view scene image dataset show promising results for crack detection using the developed approaches in this work. 198 pp. Englisch.
Librería: Buchpark, Trebbin, Alemania
EUR 40,41
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: Hervorragend. Zustand: Hervorragend | Sprache: Englisch | Produktart: Bücher | Road maintenance has traditionally been a time consuming, expensive, and manual process. Timely maintenance of roads helps in lowering rehabilitation costs, accidents, environmental pollution, while facilitating increased connectivity, trade, and growth. Easily acquirable front-view scene images are seen to be used lately for infrastructure management and road maintenance as they provide quicker, low-cost, and flexible solutions. Such scene images can easily be acquired using standard commodity cameras. In this dissertation, machine learning based approaches have been developed to analyze front-view scene images for detecting cracks automatically on road surfaces across different locations and under various conditions. This work thus contributes toward automated approaches to detect different kinds of cracks on road surfaces, thereby proposing a low-cost solution to road maintenance practices. As a result, different components are developed in this work which are sketched together to form a Decision Support System for the task of crack detection. In this study primarily three algorithmic approaches have been developed. Firstly, an unsupervised graph-based hierarchical clustering technique for road area segmentation has been developed, thus helping in detecting the road area in scene images. Secondly, a classifier and superpixel based supervised learning approach consisting of systematically identifying relevant features for detecting superpixels containing cracks has been developed. Thirdly, an unsupervised learning approach consisting of Gamma Mixture Fuzzy Model based clustering technique and keypoint matching mechanisms have been designed in this work for detecting which road pixels are crack pixels in images. Finally, this study integrates the findings and approaches to propose a Decision Support System for crack detection on road surfaces of easily acquirable front-view scene images. Evaluations performed on an experimentally collected diverse front-view scene image dataset show promising results for crack detection using the developed approaches in this work.
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
EUR 49,72
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPAP. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
EUR 47,77
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPAP. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 59,88
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Road maintenance has traditionally been a time consuming, expensive, and manual process. Timely maintenance of roads helps in lowering rehabilitation costs, accidents, environmental pollution, while facilitating increased connectivity, trade, and growth. Easily acquirable front-view scene images are seen to be used lately for infrastructure management and road maintenance as they provide quicker, low-cost, and flexible solutions. Such scene images can easily be acquired using standard commodity cameras. In this dissertation, machine learning based approaches have been developed to analyze front-view scene images for detecting cracks automatically on road surfaces across different locations and under various conditions. This work thus contributes toward automated approaches to detect different kinds of cracks on road surfaces, thereby proposing a low-cost solution to road maintenance practices. As a result, different components are developed in this work which are sketched together to form a Decision Support System for the task of crack detection. In this study primarily three algorithmic approaches have been developed. Firstly, an unsupervised graph-based hierarchical clustering technique for road area segmentation has been developed, thus helping in detecting the road area in scene images. Secondly, a classifier and superpixel based supervised learning approach consisting of systematically identifying relevant features for detecting superpixels containing cracks has been developed. Thirdly, an unsupervised learning approach consisting of Gamma Mixture Fuzzy Model based clustering technique and keypoint matching mechanisms have been designed in this work for detecting which road pixels are crack pixels in images. Finally, this study integrates the findings and approaches to propose a Decision Support System for crack detection on road surfaces of easily acquirable front-view scene images. Evaluations performed on an experimentally collected diverse front-view scene image dataset show promising results for crack detection using the developed approaches in this work. 198 pp. Englisch.
Idioma: Inglés
Publicado por Jentzsch-Cuvillier, Annette, 2020
ISBN 10: 373697258X ISBN 13: 9783736972582
Librería: moluna, Greven, Alemania
EUR 59,88
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. KlappentextrnrnRoad maintenance has traditionally been a time consuming, expensive, and manual process. Timely maintenance of roads helps in lowering rehabilitation costs, accidents, environmental pollution, while facilitating increased connecti.
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 59,88
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Road maintenance has traditionally been a time consuming, expensive, and manual process. Timely maintenance of roads helps in lowering rehabilitation costs, accidents, environmental pollution, while facilitating increased connectivity, trade, and growth. Easily acquirable front-view scene images are seen to be used lately for infrastructure management and road maintenance as they provide quicker, low-cost, and flexible solutions. Such scene images can easily be acquired using standard commodity cameras. In this dissertation, machine learning based approaches have been developed to analyze front-view scene images for detecting cracks automatically on road surfaces across different locations and under various conditions. This work thus contributes toward automated approaches to detect different kinds of cracks on road surfaces, thereby proposing a low-cost solution to road maintenance practices. As a result, different components are developed in this work which are sketched together to form a Decision Support System for the task of crack detection. In this study primarily three algorithmic approaches have been developed. Firstly, an unsupervised graph-based hierarchical clustering technique for road area segmentation has been developed, thus helping in detecting the road area in scene images. Secondly, a classifier and superpixel based supervised learning approach consisting of systematically identifying relevant features for detecting superpixels containing cracks has been developed. Thirdly, an unsupervised learning approach consisting of Gamma Mixture Fuzzy Model based clustering technique and keypoint matching mechanisms have been designed in this work for detecting which road pixels are crack pixels in images. Finally, this study integrates the findings and approaches to propose a Decision Support System for crack detection on road surfaces of easily acquirable front-view scene images. Evaluations performed on an experimentally collected diverse front-view scene image dataset show promising results for crack detection using the developed approaches in this work.
Librería: preigu, Osnabrück, Alemania
EUR 59,88
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Computer Vision and Machine Learning in Sustainable Mobility: The Case of Road Surface Defects | Sromona Chatterjee | Taschenbuch | Kartoniert / Broschiert | Englisch | 2020 | Cuvillier | EAN 9783736972582 | Verantwortliche Person für die EU: preigu GmbH & Co. KG, Lengericher Landstr. 19, 49078 Osnabrück, mail[at]preigu[dot]de | Anbieter: preigu Print on Demand.