Librería: HPB-Red, Dallas, TX, Estados Unidos de America
EUR 18,27
Cantidad disponible: 1 disponibles
Añadir al carritopaperback. Condición: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority!
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 46,46
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: New. pp. 338.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 44,45
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: New. pp. 338 52:B&W 6.14 x 9.21in or 234 x 156mm (Royal 8vo) Case Laminate on White w/Gloss Lam.
Librería: Universitätsbuchhandlung Herta Hold GmbH, Berlin, Alemania
EUR 21,00
Cantidad disponible: 1 disponibles
Añadir al carrito2007th ed. 16 x 23 cm. 332 pages. Hardcover. Versand aus Deutschland / We dispatch from Germany via Air Mail. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. Sprache: Englisch.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 46,27
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: New. pp. 338.
Idioma: Inglés
Publicado por Princeton University Press, 2025
ISBN 10: 069124586X ISBN 13: 9780691245867
Librería: Books From California, Simi Valley, CA, Estados Unidos de America
EUR 62,83
Cantidad disponible: 1 disponibles
Añadir al carritohardcover. Condición: Fine.
Idioma: Inglés
Publicado por Princeton University Press, 2025
ISBN 10: 069124586X ISBN 13: 9780691245867
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 67,67
Cantidad disponible: 2 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por Princeton University Press, 2005
ISBN 10: 0691117632 ISBN 13: 9780691117638
Librería: Better World Books, Mishawaka, IN, Estados Unidos de America
EUR 70,13
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: Very Good. Former library copy. Pages intact with possible writing/highlighting. Binding strong with minor wear. Dust jackets/supplements may not be included. Includes library markings. Stock photo provided. Product includes identifying sticker. Better World Books: Buy Books. Do Good.
Idioma: Inglés
Publicado por Princeton University Press, 2025
ISBN 10: 069124586X ISBN 13: 9780691245867
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 73,74
Cantidad disponible: 2 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Idioma: Inglés
Publicado por Princeton University Press, 2025
ISBN 10: 069124586X ISBN 13: 9780691245867
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 62,23
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por Princeton University Press, US, 2025
ISBN 10: 069124586X ISBN 13: 9780691245867
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
EUR 84,09
Cantidad disponible: 5 disponibles
Añadir al carritoHardback. Condición: New. An introduction to gradient-based stochastic optimization that integrates theory and implementationThis book explains gradient-based stochastic optimization, exploiting the methodologies of stochastic approximation and gradient estimation. Although the approach is theoretical, the book emphasizes developing algorithms that implement the methods. The underlying philosophy of this book is that when solving real problems, mathematical theory, the art of modeling, and numerical algorithms complement each other, with no one outlook dominating the others.The book first covers the theory of stochastic approximation including advanced models and state-of-the-art analysis methodology, treating applications that do not require the use of gradient estimation. It then presents gradient estimation, developing a modern approach that incorporates cutting-edge numerical algorithms. Finally, the book culminates in a rich set of case studies that integrate the concepts previously discussed into fully worked models. The use of stochastic approximation in statistics and machine learning is discussed, and in-depth theoretical treatments for selected gradient estimation approaches are included.Numerous examples show how the methods are applied concretely, and end-of-chapter exercises enable readers to consolidate their knowledge. Many chapters end with a section on "Practical Considerations" that addresses typical tradeoffs encountered in implementation. The book provides the first unified treatment of the topic, written for a wide audience that includes researchers and graduate students in applied mathematics, engineering, computer science, physics, and economics.
Idioma: Inglés
Publicado por Princeton University Press, 2025
ISBN 10: 069124586X ISBN 13: 9780691245867
Librería: Chiron Media, Wallingford, Reino Unido
EUR 72,92
Cantidad disponible: 2 disponibles
Añadir al carritohardcover. Condición: New.
Idioma: Inglés
Publicado por Princeton University Press, 2025
ISBN 10: 069124586X ISBN 13: 9780691245867
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 76,57
Cantidad disponible: 2 disponibles
Añadir al carritoCondición: New. In.
Idioma: Inglés
Publicado por Princeton University Press, 2025
ISBN 10: 069124586X ISBN 13: 9780691245867
Librería: Majestic Books, Hounslow, Reino Unido
EUR 84,40
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por Princeton University Press, 2025
ISBN 10: 069124586X ISBN 13: 9780691245867
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 74,35
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: ALLBOOKS1, Direk, SA, Australia
EUR 102,02
Cantidad disponible: 1 disponibles
Añadir al carritoBrand new book. Fast ship. Please provide full street address as we are not able to ship to P O box address.
Idioma: Inglés
Publicado por Princeton University Press, Princeton, 2006
Librería: Antiquariat Mackensen & Niemann, Berlin, Alemania
EUR 50,00
Cantidad disponible: 1 disponibles
Añadir al carritoPrinceton Series in Applied Mathematics, 213 S., sehr gutes Exemplar, illustrierter Original-Pappband,
Librería: Romtrade Corp., STERLING HEIGHTS, MI, Estados Unidos de America
EUR 106,15
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide.
Idioma: Inglés
Publicado por Princeton University Press, 2005
ISBN 10: 0691117632 ISBN 13: 9780691117638
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 110,69
Cantidad disponible: 2 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por Princeton University Press, 2005
ISBN 10: 0691117632 ISBN 13: 9780691117638
Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America
EUR 113,00
Cantidad disponible: Más de 20 disponibles
Añadir al carritoHardback. Condición: New. Trains pull into a railroad station and must wait for each other before leaving again in order to let passengers change trains. How do mathematicians then calculate a railroad timetable that accurately reflects their comings and goings? One approach is to use max-plus algebra, a framework used to model Discrete Event Systems, which are well suited to describe the ordering and timing of events. This is the first textbook on max-plus algebra, providing a concise and self-contained introduction to the topic. Applications of max-plus algebra abound in the world around us. Traffic systems, computer communication systems, production lines, and flows in networks are all based on discrete even systems, and thus can be conveniently described and analyzed by means of max-plus algebra. The book consists of an introduction and thirteen chapters in three parts. Part One explores the introduction of max-plus algebra and of system descriptions based upon it. Part Two deals with a real application, namely the design of timetables for railway networks. Part Three examines various extensions, such as stochastic systems and min-max-plus systems.The text is suitable for last-year undergraduates in mathematics, and each chapter provides exercises, notes, and a reference section.
Idioma: Inglés
Publicado por Princeton University Press, US, 2025
ISBN 10: 069124586X ISBN 13: 9780691245867
Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America
EUR 119,99
Cantidad disponible: Más de 20 disponibles
Añadir al carritoHardback. Condición: New. An introduction to gradient-based stochastic optimization that integrates theory and implementationThis book explains gradient-based stochastic optimization, exploiting the methodologies of stochastic approximation and gradient estimation. Although the approach is theoretical, the book emphasizes developing algorithms that implement the methods. The underlying philosophy of this book is that when solving real problems, mathematical theory, the art of modeling, and numerical algorithms complement each other, with no one outlook dominating the others.The book first covers the theory of stochastic approximation including advanced models and state-of-the-art analysis methodology, treating applications that do not require the use of gradient estimation. It then presents gradient estimation, developing a modern approach that incorporates cutting-edge numerical algorithms. Finally, the book culminates in a rich set of case studies that integrate the concepts previously discussed into fully worked models. The use of stochastic approximation in statistics and machine learning is discussed, and in-depth theoretical treatments for selected gradient estimation approaches are included.Numerous examples show how the methods are applied concretely, and end-of-chapter exercises enable readers to consolidate their knowledge. Many chapters end with a section on "Practical Considerations" that addresses typical tradeoffs encountered in implementation. The book provides the first unified treatment of the topic, written for a wide audience that includes researchers and graduate students in applied mathematics, engineering, computer science, physics, and economics.
Librería: ALLBOOKS1, Direk, SA, Australia
EUR 120,98
Cantidad disponible: 1 disponibles
Añadir al carritoBrand new book. Fast ship. Please provide full street address as we are not able to ship to P O box address.
Idioma: Inglés
Publicado por Princeton University Press, 2005
ISBN 10: 0691117632 ISBN 13: 9780691117638
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 125,13
Cantidad disponible: 2 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Idioma: Inglés
Publicado por Princeton University Press, 2005
ISBN 10: 0691117632 ISBN 13: 9780691117638
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 110,73
Cantidad disponible: 2 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por Princeton University Press, 2025
ISBN 10: 069124586X ISBN 13: 9780691245867
Librería: moluna, Greven, Alemania
EUR 81,88
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 129,89
Cantidad disponible: 2 disponibles
Añadir al carritoHardcover. Condición: Brand New. 448 pages. 10.00x7.00x10.00 inches. In Stock.
Idioma: Inglés
Publicado por Princeton University Press, 2005
ISBN 10: 0691117632 ISBN 13: 9780691117638
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 131,62
Cantidad disponible: 2 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Idioma: Inglés
Publicado por Princeton University Press Okt 2025, 2025
ISBN 10: 069124586X ISBN 13: 9780691245867
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 88,55
Cantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware - An introduction to gradient-based stochastic optimization that integrates theory and implementationThis book explains gradient-based stochastic optimization, exploiting the methodologies of stochastic approximation and gradient estimation. Although the approach is theoretical, the book emphasizes developing algorithms that implement the methods. The underlying philosophy of this book is that when solving real problems, mathematical theory, the art of modeling, and numerical algorithms complement each other, with no one outlook dominating the others. The book first covers the theory of stochastic approximation including advanced models and state-of-the-art analysis methodology, treating applications that do not require the use of gradient estimation. It then presents gradient estimation, developing a modern approach that incorporates cutting-edge numerical algorithms. Finally, the book culminates in a rich set of case studies that integrate the concepts previously discussed into fully worked models. The use of stochastic approximation in statistics and machine learning is discussed, and in-depth theoretical treatments for selected gradient estimation approaches are included. Numerous examples show how the methods are applied concretely, and end-of-chapter exercises enable readers to consolidate their knowledge. Many chapters end with a section on 'Practical Considerations' that addresses typical tradeoffs encountered in implementation. The book provides the first unified treatment of the topic, written for a wide audience that includes researchers and graduate students in applied mathematics, engineering, computer science, physics, and economics.
Idioma: Inglés
Publicado por Princeton University Press, US, 2025
ISBN 10: 069124586X ISBN 13: 9780691245867
Librería: Rarewaves.com UK, London, Reino Unido
EUR 78,12
Cantidad disponible: 5 disponibles
Añadir al carritoHardback. Condición: New. An introduction to gradient-based stochastic optimization that integrates theory and implementationThis book explains gradient-based stochastic optimization, exploiting the methodologies of stochastic approximation and gradient estimation. Although the approach is theoretical, the book emphasizes developing algorithms that implement the methods. The underlying philosophy of this book is that when solving real problems, mathematical theory, the art of modeling, and numerical algorithms complement each other, with no one outlook dominating the others.The book first covers the theory of stochastic approximation including advanced models and state-of-the-art analysis methodology, treating applications that do not require the use of gradient estimation. It then presents gradient estimation, developing a modern approach that incorporates cutting-edge numerical algorithms. Finally, the book culminates in a rich set of case studies that integrate the concepts previously discussed into fully worked models. The use of stochastic approximation in statistics and machine learning is discussed, and in-depth theoretical treatments for selected gradient estimation approaches are included.Numerous examples show how the methods are applied concretely, and end-of-chapter exercises enable readers to consolidate their knowledge. Many chapters end with a section on "Practical Considerations" that addresses typical tradeoffs encountered in implementation. The book provides the first unified treatment of the topic, written for a wide audience that includes researchers and graduate students in applied mathematics, engineering, computer science, physics, and economics.
Idioma: Inglés
Publicado por Princeton University Press, US, 2005
ISBN 10: 0691117632 ISBN 13: 9780691117638
Librería: Rarewaves USA United, OSWEGO, IL, Estados Unidos de America
EUR 114,60
Cantidad disponible: Más de 20 disponibles
Añadir al carritoHardback. Condición: New. Trains pull into a railroad station and must wait for each other before leaving again in order to let passengers change trains. How do mathematicians then calculate a railroad timetable that accurately reflects their comings and goings? One approach is to use max-plus algebra, a framework used to model Discrete Event Systems, which are well suited to describe the ordering and timing of events. This is the first textbook on max-plus algebra, providing a concise and self-contained introduction to the topic. Applications of max-plus algebra abound in the world around us. Traffic systems, computer communication systems, production lines, and flows in networks are all based on discrete even systems, and thus can be conveniently described and analyzed by means of max-plus algebra. The book consists of an introduction and thirteen chapters in three parts. Part One explores the introduction of max-plus algebra and of system descriptions based upon it. Part Two deals with a real application, namely the design of timetables for railway networks. Part Three examines various extensions, such as stochastic systems and min-max-plus systems.The text is suitable for last-year undergraduates in mathematics, and each chapter provides exercises, notes, and a reference section.