Idioma: Inglés
Publicado por Cambridge University Press, 2011
ISBN 10: 0521192242 ISBN 13: 9780521192248
Librería: Better World Books, Mishawaka, IN, Estados Unidos de America
EUR 26,22
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: Very Good. Pages intact with possible writing/highlighting. Binding strong with minor wear. Dust jackets/supplements may not be included. Stock photo provided. Product includes identifying sticker. Better World Books: Buy Books. Do Good.
Idioma: Inglés
Publicado por Cambridge University Press, 2011
ISBN 10: 0521192242 ISBN 13: 9780521192248
Librería: Better World Books: West, Reno, NV, Estados Unidos de America
EUR 26,22
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: Good. Pages intact with minimal writing/highlighting. The binding may be loose and creased. Dust jackets/supplements are not included. Stock photo provided. Product includes identifying sticker. Better World Books: Buy Books. Do Good.
Idioma: Inglés
Publicado por Cambridge University Press, 2011
ISBN 10: 0521192242 ISBN 13: 9780521192248
Librería: Boards & Wraps, Baltimore, MD, Estados Unidos de America
Original o primera edición
EUR 26,22
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Very Good+. Estado de la sobrecubierta: No Dust Jacket. First Edition. Light rubbing and toning overall and some light scratches. Interior pages clean and unmarked. A tight and clean copy. Photos upon request. International shipping billed at cost.; 4to 11" - 13" tall; 492 pages.
Idioma: Inglés
Publicado por Cambridge University Press, 2011
ISBN 10: 0521192242 ISBN 13: 9780521192248
Librería: HPB-Red, Dallas, TX, Estados Unidos de America
EUR 25,53
Cantidad disponible: 1 disponibles
Añadir al carritohardcover. Condición: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority!
Idioma: Inglés
Publicado por Cambridge University Press, 2012
ISBN 10: 0521192242 ISBN 13: 9780521192248
Librería: Anybook.com, Lincoln, Reino Unido
EUR 17,67
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: Good. This is an ex-library book and may have the usual library/used-book markings inside.This book has hardback covers. In good all round condition. No dust jacket. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,1100grams, ISBN:9780521192248.
Idioma: Inglés
Publicado por Cambridge University Press, 2018
ISBN 10: 1108461743 ISBN 13: 9781108461740
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 63,24
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por Cambridge University Press, 2018
ISBN 10: 1108461743 ISBN 13: 9781108461740
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 65,56
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por Cambridge University Press, 2018
ISBN 10: 1108461743 ISBN 13: 9781108461740
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 66,36
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Idioma: Inglés
Publicado por Cambridge University Press, 2011
ISBN 10: 0521192242 ISBN 13: 9780521192248
Librería: Real Books R Better, Thompsons Station, TN, Estados Unidos de America
EUR 66,58
Cantidad disponible: 1 disponibles
Añadir al carritohardcover. Condición: New. BRAND NEW! Ships within 24 hours!
Idioma: Inglés
Publicado por Cambridge University Press, Cambridge, 2018
ISBN 10: 1108461743 ISBN 13: 9781108461740
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
EUR 71,79
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. This book presents an integrated collection of representative approaches for scaling up machine learning and data mining methods on parallel and distributed computing platforms. Demand for parallelizing learning algorithms is highly task-specific: in some settings it is driven by the enormous dataset sizes, in others by model complexity or by real-time performance requirements. Making task-appropriate algorithm and platform choices for large-scale machine learning requires understanding the benefits, trade-offs and constraints of the available options. Solutions presented in the book cover a range of parallelization platforms from FPGAs and GPUs to multi-core systems and commodity clusters, concurrent programming frameworks including CUDA, MPI, MapReduce and DryadLINQ, and learning settings (supervised, unsupervised, semi-supervised and online learning). Extensive coverage of parallelization of boosted trees, SVMs, spectral clustering, belief propagation and other popular learning algorithms, and deep dives into several applications, make the book equally useful for researchers, students and practitioners. In many practical situations it is impossible to run existing machine learning methods on a single computer, because either the data is too large or the speed and throughput requirements are too demanding. Researchers and practitioners will find here a variety of machine learning methods developed specifically for parallel or distributed systems, covering algorithms, platforms and applications. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Idioma: Inglés
Publicado por Cambridge University Press, 2018
ISBN 10: 1108461743 ISBN 13: 9781108461740
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 60,51
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Idioma: Inglés
Publicado por Cambridge University Press 2018-03-29, 2018
ISBN 10: 1108461743 ISBN 13: 9781108461740
Librería: Chiron Media, Wallingford, Reino Unido
EUR 59,14
Cantidad disponible: 10 disponibles
Añadir al carritoPaperback. Condición: New.
Idioma: Inglés
Publicado por Cambridge University Press, 2018
ISBN 10: 1108461743 ISBN 13: 9781108461740
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 60,50
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por Cambridge University Press, 2018
ISBN 10: 1108461743 ISBN 13: 9781108461740
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 68,55
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Idioma: Inglés
Publicado por Cambridge University Press, 2018
ISBN 10: 1108461743 ISBN 13: 9781108461740
Librería: Revaluation Books, Exeter, Reino Unido
EUR 90,97
Cantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 1st reprint edition. 492 pages. 9.88x7.01x1.50 inches. In Stock.
Idioma: Inglés
Publicado por Cambridge University Press, 2011
ISBN 10: 0521192242 ISBN 13: 9780521192248
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 121,50
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por Cambridge University Press, Cambridge, 2011
ISBN 10: 0521192242 ISBN 13: 9780521192248
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
EUR 129,97
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. This book presents an integrated collection of representative approaches for scaling up machine learning and data mining methods on parallel and distributed computing platforms. Demand for parallelizing learning algorithms is highly task-specific: in some settings it is driven by the enormous dataset sizes, in others by model complexity or by real-time performance requirements. Making task-appropriate algorithm and platform choices for large-scale machine learning requires understanding the benefits, trade-offs and constraints of the available options. Solutions presented in the book cover a range of parallelization platforms from FPGAs and GPUs to multi-core systems and commodity clusters, concurrent programming frameworks including CUDA, MPI, MapReduce and DryadLINQ, and learning settings (supervised, unsupervised, semi-supervised and online learning). Extensive coverage of parallelization of boosted trees, SVMs, spectral clustering, belief propagation and other popular learning algorithms, and deep dives into several applications, make the book equally useful for researchers, students and practitioners. In many practical situations it is impossible to run existing machine learning methods on a single computer, because either the data is too large or the speed and throughput requirements are too demanding. Researchers and practitioners will find here a variety of machine learning methods developed specifically for parallel or distributed systems, covering algorithms, platforms and applications. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Idioma: Inglés
Publicado por Cambridge University Press, 2011
ISBN 10: 0521192242 ISBN 13: 9780521192248
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 115,14
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Idioma: Inglés
Publicado por Cambridge University Press CUP, 2011
ISBN 10: 0521192242 ISBN 13: 9780521192248
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 139,29
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. pp. 492.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 166,39
Cantidad disponible: 2 disponibles
Añadir al carritoHardcover. Condición: Brand New. 488 pages. 10.00x7.20x1.30 inches. In Stock.
Idioma: Inglés
Publicado por Cambridge University Press, 2011
ISBN 10: 0521192242 ISBN 13: 9780521192248
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 155,50
Cantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book presents an integrated collection of representative approaches for scaling up machine learning and data mining methods on parallel and distributed computing platforms. Demand for parallelizing learning algorithms is highly task-specific: in some settings it is driven by the enormous dataset sizes, in others by model complexity or by real-time performance requirements. Making task-appropriate algorithm and platform choices for large-scale machine learning requires understanding the benefits, trade-offs and constraints of the available options. Solutions presented in the book cover a range of parallelization platforms from FPGAs and GPUs to multi-core systems and commodity clusters, concurrent programming frameworks including CUDA, MPI, MapReduce and DryadLINQ, and learning settings (supervised, unsupervised, semi-supervised and online learning). Extensive coverage of parallelization of boosted trees, SVMs, spectral clustering, belief propagation and other popular learning algorithms, and deep dives into several applications, make the book equally useful for researchers, students and practitioners.
Idioma: Inglés
Publicado por Cambridge University Press, 2011
ISBN 10: 0521192242 ISBN 13: 9780521192248
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 217,00
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Like New. LIKE NEW. SHIPS FROM MULTIPLE LOCATIONS. book.
Idioma: Chino
Publicado por National Defense Industry Press, 2021
ISBN 10: 7118122890 ISBN 13: 9787118122893
Librería: liu xing, Nanjing, JS, China
EUR 123,25
Cantidad disponible: 3 disponibles
Añadir al carritopaperback. Condición: New. Paperback. Pub Date: 2021-03-01 Pages: 496 Language: Chinese Publisher: National Defense Industry Press Large-scale Machine Learning: Parallel and Distributed Technology The content involves the parallelization of some machine learning algorithms. making large-scale distributed machines Learning algorithms become possible. The content is divided into four parts: large-scale machine learning frameworks. supervised and unsupervised learning algorithms. other learning algorithms and related appl.
Idioma: Inglés
Publicado por Cambridge University Press, 2018
ISBN 10: 1108461743 ISBN 13: 9781108461740
Librería: Revaluation Books, Exeter, Reino Unido
EUR 57,88
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Brand New. 1st reprint edition. 492 pages. 9.88x7.01x1.50 inches. In Stock. This item is printed on demand.
Idioma: Inglés
Publicado por Cambridge University Press, 2018
ISBN 10: 1108461743 ISBN 13: 9781108461740
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 61,83
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days.
Idioma: Inglés
Publicado por Cambridge University Press, Cambridge, 2018
ISBN 10: 1108461743 ISBN 13: 9781108461740
Librería: CitiRetail, Stevenage, Reino Unido
EUR 68,39
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. This book presents an integrated collection of representative approaches for scaling up machine learning and data mining methods on parallel and distributed computing platforms. Demand for parallelizing learning algorithms is highly task-specific: in some settings it is driven by the enormous dataset sizes, in others by model complexity or by real-time performance requirements. Making task-appropriate algorithm and platform choices for large-scale machine learning requires understanding the benefits, trade-offs and constraints of the available options. Solutions presented in the book cover a range of parallelization platforms from FPGAs and GPUs to multi-core systems and commodity clusters, concurrent programming frameworks including CUDA, MPI, MapReduce and DryadLINQ, and learning settings (supervised, unsupervised, semi-supervised and online learning). Extensive coverage of parallelization of boosted trees, SVMs, spectral clustering, belief propagation and other popular learning algorithms, and deep dives into several applications, make the book equally useful for researchers, students and practitioners. In many practical situations it is impossible to run existing machine learning methods on a single computer, because either the data is too large or the speed and throughput requirements are too demanding. Researchers and practitioners will find here a variety of machine learning methods developed specifically for parallel or distributed systems, covering algorithms, platforms and applications. This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Librería: moluna, Greven, Alemania
EUR 66,08
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. In many practical situations it is impossible to run existing machine learning methods on a single computer, because either the data is too large or the speed and throughput requirements are too demanding. Researchers and practitioners will find here a vari.
Idioma: Inglés
Publicado por Cambridge University Press, Cambridge, 2018
ISBN 10: 1108461743 ISBN 13: 9781108461740
Librería: AussieBookSeller, Truganina, VIC, Australia
EUR 100,95
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. This book presents an integrated collection of representative approaches for scaling up machine learning and data mining methods on parallel and distributed computing platforms. Demand for parallelizing learning algorithms is highly task-specific: in some settings it is driven by the enormous dataset sizes, in others by model complexity or by real-time performance requirements. Making task-appropriate algorithm and platform choices for large-scale machine learning requires understanding the benefits, trade-offs and constraints of the available options. Solutions presented in the book cover a range of parallelization platforms from FPGAs and GPUs to multi-core systems and commodity clusters, concurrent programming frameworks including CUDA, MPI, MapReduce and DryadLINQ, and learning settings (supervised, unsupervised, semi-supervised and online learning). Extensive coverage of parallelization of boosted trees, SVMs, spectral clustering, belief propagation and other popular learning algorithms, and deep dives into several applications, make the book equally useful for researchers, students and practitioners. In many practical situations it is impossible to run existing machine learning methods on a single computer, because either the data is too large or the speed and throughput requirements are too demanding. Researchers and practitioners will find here a variety of machine learning methods developed specifically for parallel or distributed systems, covering algorithms, platforms and applications. This item is printed on demand. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 121,79
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Brand New. 488 pages. 10.00x7.20x1.30 inches. In Stock. This item is printed on demand.
Idioma: Inglés
Publicado por Cambridge University Press, 2011
ISBN 10: 0521192242 ISBN 13: 9780521192248
Librería: Majestic Books, Hounslow, Reino Unido
EUR 138,64
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand pp. 492 144 Illus.