Idioma: Inglés
Publicado por Packt Publishing - ebooks Accoun, 2020
ISBN 10: 1800200455 ISBN 13: 9781800200456
Librería: HPB-Red, Dallas, TX, Estados Unidos de America
EUR 27,10
Cantidad disponible: 1 disponibles
Añadir al carritopaperback. Condición: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority!
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 44,88
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 47,20
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 47,76
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
EUR 50,90
Cantidad disponible: 5 disponibles
Añadir al carritoCondición: New. The Reinforcement Learning Workshop: Learn how to apply cutting-edge reinforcement learning algorithms to a wide range of control problems (Paperback or Softback).
Idioma: Inglés
Publicado por Packt Publishing 2020-08-18, 2020
ISBN 10: 1800200455 ISBN 13: 9781800200456
Librería: Chiron Media, Wallingford, Reino Unido
EUR 42,94
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 47,53
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 45,87
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por Packt Publishing Limited, GB, 2020
ISBN 10: 1800200455 ISBN 13: 9781800200456
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
EUR 64,71
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: New. Start with the basics of reinforcement learning and explore deep learning concepts such as deep Q-learning, deep recurrent Q-networks, and policy-based methods with this practical guideKey FeaturesUse TensorFlow to write reinforcement learning agents for performing challenging tasksLearn how to solve finite Markov decision problemsTrain models to understand popular video games like BreakoutBook DescriptionVarious intelligent applications such as video games, inventory management software, warehouse robots, and translation tools use reinforcement learning (RL) to make decisions and perform actions that maximize the probability of the desired outcome. This book will help you to get to grips with the techniques and the algorithms for implementing RL in your machine learning models.Starting with an introduction to RL, you'll be guided through different RL environments and frameworks. You'll learn how to implement your own custom environments and use OpenAI baselines to run RL algorithms. Once you've explored classic RL techniques such as Dynamic Programming, Monte Carlo, and TD Learning, you'll understand when to apply the different deep learning methods in RL and advance to deep Q-learning. The book will even help you understand the different stages of machine-based problem-solving by using DARQN on a popular video game Breakout. Finally, you'll find out when to use a policy-based method to tackle an RL problem.By the end of The Reinforcement Learning Workshop, you'll be equipped with the knowledge and skills needed to solve challenging problems using reinforcement learning.What you will learnUse OpenAI Gym as a framework to implement RL environmentsFind out how to define and implement reward functionExplore Markov chain, Markov decision process, and the Bellman equationDistinguish between Dynamic Programming, Monte Carlo, and Temporal Difference LearningUnderstand the multi-armed bandit problem and explore various strategies to solve itBuild a deep Q model network for playing the video game BreakoutWho this book is forIf you are a data scientist, machine learning enthusiast, or a Python developer who wants to learn basic to advanced deep reinforcement learning algorithms, this workshop is for you. A basic understanding of the Python language is necessary.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 50,61
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Idioma: Inglés
Publicado por Packt Publishing Limited, GB, 2020
ISBN 10: 1800200455 ISBN 13: 9781800200456
Librería: Rarewaves.com UK, London, Reino Unido
EUR 60,22
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: New. Start with the basics of reinforcement learning and explore deep learning concepts such as deep Q-learning, deep recurrent Q-networks, and policy-based methods with this practical guideKey FeaturesUse TensorFlow to write reinforcement learning agents for performing challenging tasksLearn how to solve finite Markov decision problemsTrain models to understand popular video games like BreakoutBook DescriptionVarious intelligent applications such as video games, inventory management software, warehouse robots, and translation tools use reinforcement learning (RL) to make decisions and perform actions that maximize the probability of the desired outcome. This book will help you to get to grips with the techniques and the algorithms for implementing RL in your machine learning models.Starting with an introduction to RL, you'll be guided through different RL environments and frameworks. You'll learn how to implement your own custom environments and use OpenAI baselines to run RL algorithms. Once you've explored classic RL techniques such as Dynamic Programming, Monte Carlo, and TD Learning, you'll understand when to apply the different deep learning methods in RL and advance to deep Q-learning. The book will even help you understand the different stages of machine-based problem-solving by using DARQN on a popular video game Breakout. Finally, you'll find out when to use a policy-based method to tackle an RL problem.By the end of The Reinforcement Learning Workshop, you'll be equipped with the knowledge and skills needed to solve challenging problems using reinforcement learning.What you will learnUse OpenAI Gym as a framework to implement RL environmentsFind out how to define and implement reward functionExplore Markov chain, Markov decision process, and the Bellman equationDistinguish between Dynamic Programming, Monte Carlo, and Temporal Difference LearningUnderstand the multi-armed bandit problem and explore various strategies to solve itBuild a deep Q model network for playing the video game BreakoutWho this book is forIf you are a data scientist, machine learning enthusiast, or a Python developer who wants to learn basic to advanced deep reinforcement learning algorithms, this workshop is for you. A basic understanding of the Python language is necessary.
Idioma: Inglés
Publicado por Packt Publishing - ebooks Account, 2020
ISBN 10: 1800200455 ISBN 13: 9781800200456
Librería: Revaluation Books, Exeter, Reino Unido
EUR 53,24
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Brand New. 822 pages. 9.25x7.52x1.69 inches. In Stock. This item is printed on demand.