Publicado por Morgan & Claypool Publishers, 2009
ISBN 10: 1598296922 ISBN 13: 9781598296921
Idioma: Inglés
Librería: Better World Books: West, Reno, NV, Estados Unidos de America
EUR 28,65
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Good. Used book that is in clean, average condition without any missing pages.
Publicado por Springer International Publishing AG, CH, 2009
ISBN 10: 3031004213 ISBN 13: 9783031004216
Idioma: Inglés
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
EUR 41,34
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: New. 1°. Most subfields of computer science have an interface layer via which applications communicate with the infrastructure, and this is key to their success (e.g., the Internet in networking, the relational model in databases, etc.). So far this interface layer has been missing in AI. First-order logic and probabilistic graphical models each have some of the necessary features, but a viable interface layer requires combining both. Markov logic is a powerful new language that accomplishes this by attaching weights to first-order formulas and treating them as templates for features of Markov random fields. Most statistical models in wide use are special cases of Markov logic, and first-order logic is its infinite-weight limit. Inference algorithms for Markov logic combine ideas from satisfiability, Markov chain Monte Carlo, belief propagation, and resolution. Learning algorithms make use of conditional likelihood, convex optimization, and inductive logic programming. Markov logic has been successfully applied to problems in information extraction and integration, natural language processing, robot mapping, social networks, computational biology, and others, and is the basis of the open-source Alchemy system. Table of Contents: Introduction / Markov Logic / Inference / Learning / Extensions / Applications / Conclusion.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 42,45
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 33,94
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In English.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 45,70
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. 1st edition NO-PA16APR2015-KAP.
Publicado por Springer, Berlin|Springer International Publishing|Morgan & Claypool|Springer, 2009
ISBN 10: 3031004213 ISBN 13: 9783031004216
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 37,61
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. Most subfields of computer science have an interface layer via which applications communicate with the infrastructure, and this is key to their success (e.g., the Internet in networking, the relational model in databases, etc.). So far this interface layer .
Publicado por Springer International Publishing AG, CH, 2009
ISBN 10: 3031004213 ISBN 13: 9783031004216
Idioma: Inglés
Librería: Rarewaves.com UK, London, Reino Unido
EUR 37,91
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: New. 1°. Most subfields of computer science have an interface layer via which applications communicate with the infrastructure, and this is key to their success (e.g., the Internet in networking, the relational model in databases, etc.). So far this interface layer has been missing in AI. First-order logic and probabilistic graphical models each have some of the necessary features, but a viable interface layer requires combining both. Markov logic is a powerful new language that accomplishes this by attaching weights to first-order formulas and treating them as templates for features of Markov random fields. Most statistical models in wide use are special cases of Markov logic, and first-order logic is its infinite-weight limit. Inference algorithms for Markov logic combine ideas from satisfiability, Markov chain Monte Carlo, belief propagation, and resolution. Learning algorithms make use of conditional likelihood, convex optimization, and inductive logic programming. Markov logic has been successfully applied to problems in information extraction and integration, natural language processing, robot mapping, social networks, computational biology, and others, and is the basis of the open-source Alchemy system. Table of Contents: Introduction / Markov Logic / Inference / Learning / Extensions / Applications / Conclusion.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 45,84
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 47,65
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 36,67
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Brand New. 154 pages. 9.25x7.51x9.25 inches. In Stock. This item is printed on demand.