UNIVERSAL ESTIMATION OF INFORMATION MEASURES FOR ANALOG SOURCES (FOUNDATIONS AND TRENDS IN COMMUNICATIONS AND INFORMATION THEORY, 5:3)

Wang, Qing; Kulkarni, Sanjeev R.; Verdu, Sergio

ISBN 10: 1601982305 ISBN 13: 9781601982308
Editorial: NOW the Essence of Knowledge, Hanover, 2009
Usado Softcover

Librería: Second Story Books, ABAA, Rockville, MD, Estados Unidos de America Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Honoris Librarius
Miembro de AbeBooks desde 1996

Miembro de asociación:
Este artículo en concreto ya no está disponible.

Descripción

Descripción:

Octavo; Fair+; Paperback; Spine, green with black print; Cover has slight edgewear, puckering to top spine corner, else clean and bright; Text block has faint moisture stain and puckering to top spine corner throughout, else clean and tight; ix, 93 pages, illustrated (b&w diagrams). 1351585. FP New Rockville Stock. N° de ref. del artículo 1351585

Denunciar este artículo

Sinopsis:

Entropy, mutual information and divergence measure the randomness, dependence and dissimilarity, respectively, of random objects. In addition to their prominent role in information theory, they have found numerous applications, among others, in probability theory statistics, physics, chemistry, molecular biology, ecology, bioinformatics, neuroscience, machine learning, linguistics, and finance. Many of these applications require a universal estimate of information measures which does not assume knowledge of the statistical properties of the observed data. Over the past few decades, several non-parametric algorithms have been proposed to estimate information measures.Universal Estimation of Information Measures for Analog Sources presents a comprehensive survey of universal estimation of information measures for memoryless analog (real-valued or real vector-valued) sources with an emphasis on the estimation of mutual information and divergence and their applications. The book reviews the consistency of the universal algorithms and the corresponding sufficient conditions as well as their speed of convergence.Universal Estimation of Information Measures for Analog Sources provides a comprehensive review of an increasingly important topic in Information Theory. It will be of interest to students, practitioners and researchers working in Information Theory.

Reseña del editor: Entropy, mutual information and divergence measure the randomness, dependence and dissimilarity, respectively, of random objects. In addition to their prominent role in information theory, they have found numerous applications, among others, in probability theory statistics, physics, chemistry, molecular biology, ecology, bioinformatics, neuroscience, machine learning, linguistics, and finance. Many of these applications require a universal estimate of information measures which does not assume knowledge of the statistical properties of the observed data. Over the past few decades, several non-parametric algorithms have been proposed to estimate information measures. Universal Estimation of Information Measures for Analog Sources presents a comprehensive survey of universal estimation of information measures for memoryless analog (real-valued or real vector-valued) sources with an emphasis on the estimation of mutual information and divergence and their applications. The book reviews the consistency of the universal algorithms and the corresponding sufficient conditions as well as their speed of convergence. Universal Estimation of Information Measures for Analog Sources provides a comprehensive review of an increasingly important topic in Information Theory. It will be of interest to students, practitioners and researchers working in Information Theory.

"Sobre este título" puede pertenecer a otra edición de este libro.

Detalles bibliográficos

Título: UNIVERSAL ESTIMATION OF INFORMATION MEASURES...
Editorial: NOW the Essence of Knowledge, Hanover
Año de publicación: 2009
Encuadernación: Softcover

Los mejores resultados en AbeBooks

Imagen de archivo

Wang, Associate Professor Qing
Publicado por Now Publishers, 2009
ISBN 10: 1601982305 ISBN 13: 9781601982308
Antiguo o usado Tapa blanda

Librería: Phatpocket Limited, Waltham Abbey, HERTS, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: Like New. Used - Like New. Book is new and unread but may have minor shelf wear. Your purchase helps support Sri Lankan Children's Charity 'The Rainbow Centre'. Our donations to The Rainbow Centre have helped provide an education and a safe haven to hundreds of children who live in appalling conditions. Nº de ref. del artículo: Z1-J-018-01066

Contactar al vendedor

Comprar usado

EUR 104,62
EUR 12,15 shipping
Se envía de Reino Unido a Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Wang, Qing, Kulkarni, Sanjeev R., Verdú, Sergio
Publicado por Now Publishers Inc, 2009
ISBN 10: 1601982305 ISBN 13: 9781601982308
Antiguo o usado Paperback

Librería: Mispah books, Redhill, SURRE, Reino Unido

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: Like New. LIKE NEW. SHIPS FROM MULTIPLE LOCATIONS. book. Nº de ref. del artículo: ERICA79016019823056

Contactar al vendedor

Comprar usado

EUR 169,37
EUR 28,55 shipping
Se envía de Reino Unido a Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito