Sinopsis
Transport barriers are observed inhibitors of the spread of substances in flows. The collection of such barriers offers a powerful geometric template that frames the main pathways, or lack thereof, in any transport process. This book surveys effective and mathematically grounded methods for defining, locating and leveraging transport barriers in numerical simulations, laboratory experiments, technological processes and nature. It provides a unified treatment of material developed over the past two decades, focusing on the methods that have a solid foundation and broad applicability to data sets beyond simple model flows. The intended audience ranges from advanced undergraduates to researchers in the areas of turbulence, geophysical flows, aerodynamics, chemical engineering, environmental engineering, flow visualization, computational mathematics and dynamical systems. Detailed open-source implementations of the numerical methods are provided in an accompanying collection of Jupyter notebooks linked from the electronic version of the book.
Acerca del autor
George Haller holds the Chair in Nonlinear Dynamics at the Institute of Mechanical Systems of ETH Zürich. Previously, he held tenured faculty positions at Brown University, McGill University and MIT. For his research in nonlinear dynamical systems, he has received numerous recognitions including a Sloan Fellowship, an ASME T. Hughes Young Investigator award, a Manning Assistant Professorship at Brown and a Faculty of Engineering Distinguished Professorship at McGill. He is an elected fellow of the SIAM, APS, ASME and an external member of the Hungarian Academy of Science. He is the author of more than 150 publications.
"Sobre este título" puede pertenecer a otra edición de este libro.