From the reviews:
“This book is a complete study of ℓ1-penalization based statistical methods for high-dimensional data ... . Definitely, this book is useful. ... its strong level in mathematics makes it more suitable to researchers and graduate students who already have a strong background in statistics. ... it gives the state-of-the-art of the theory, and therefore can be used for an advanced course on the topic. ... the last part of the book is an exciting introduction to new research perspectives provided by ℓ1-penalized methods.” (Pierre Alquier, Mathematical Reviews, Issue 2012 e)
“All Classical Statisticians interested in the very popular but a bit old methodologies like the Lasso (Tibshirani, 1996), its modifications like adaptive Lasso (Zou, 2006), and their theory, computational algorithms, applications to bioinformatics and other high dimensional applications. All such researchers would find this book worth buying. It is written by two outstanding theoreticians with flair for clear writing and excellent applications. ... theory depends a lot on new concentration inequalities coming from the French probabilists. The book has good collection of these, with proofs.” (Jayanta K. Ghosh, International Statistical Review, Vol. 80 (3), 2012)