This book introduces a new, state-of-the-art method for the study of asymptotic behavior of solutions for evolution equations. The underlying theory hinges on a new stability result, which is presented in detail; also included is a review of basic techniques---many original to the authors---for the solution of nonlinear diffusion equations. Subsequent chapters feature a self-contained analysis of specific equations whose solutions depend on the stability theorem; a variety of estimation techniques for solutions of semi- and quasilinear parabolic equations are provided as well.
With its carefully-constructed theorems, proofs, and references, the text is appropriate for students and researchers in physics and mathematics who have basic knowledge of PDEs and some prior acquaintance with evolution equations. Written by established mathematicians at the forefront of their field, this blend of delicate analysis and broad application is ideal for a course or seminar in asymptotic analysis and nonlinear partial differential equations.
"The authors are famous experts in the field of PDEs and blow-up techniques. In this book they present a stability theorem, the so-called S-theorem, and show, with several examples, how it may be applied to a wide range of stability problems for evolution equations. The book [is] aimed primarily aimed at advanced graduate students."
―Mathematical Reviews
"The book is very interesting and useful for researchers and students in mathematical physics...with basic knowledge in partial differential equations and functional analysis. A comprehensive index and bibliography are given" ---Revue Roumaine de Mathématiques Pures et Appliquées