Soft Computing for Knowledge Discovery

Shanahan, James G. (Clairvoyance Cooperation)

ISBN 10: 1461369479 ISBN 13: 9781461369479
Editorial: Springer-Verlag New York Inc., 2012
Nuevos Encuadernación de tapa blanda

Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Vendedor de AbeBooks desde 9 de octubre de 2009

Este artículo en concreto ya no está disponible.

Descripción

Descripción:

Series: The Springer International Series in Engineering and Computer Science. Num Pages: 326 pages, biography. BIC Classification: MB; TBC; UYQ. Category: (P) Professional & Vocational. Dimension: 234 x 156 x 18. Weight in Grams: 539. . 2012. Softcover reprint of the original 1st ed. 2000. Paperback. . . . . Books ship from the US and Ireland. N° de ref. del artículo V9781461369479

Denunciar este artículo

Sinopsis:

Knowledge discovery is an area of computer science that attempts to uncover interesting and useful patterns in data that permit a computer to perform a task autonomously or assist a human in performing a task more efficiently.
Soft Computing for Knowledge Discovery provides a self-contained and systematic exposition of the key theory and algorithms that form the core of knowledge discovery from a soft computing perspective. It focuses on knowledge representation, machine learning, and the key methodologies that make up the fabric of soft computing - fuzzy set theory, fuzzy logic, evolutionary computing, and various theories of probability (e.g. naïve Bayes and Bayesian networks, Dempster-Shafer theory, mass assignment theory, and others). In addition to describing many state-of-the-art soft computing approaches to knowledge discovery, the author introduces Cartesian granule features and their corresponding learning algorithms as an intuitive approach to knowledge discovery. This new approach embraces the synergistic spirit of soft computing and exploits uncertainty in order to achieve tractability, transparency and generalization. Parallels are drawn between this approach and other well known approaches (such as naive Bayes and decision trees) leading to equivalences under certain conditions.
The approaches presented are further illustrated in a battery of both artificial and real-world problems. Knowledge discovery in real-world problems, such as object recognition in outdoor scenes, medical diagnosis and control, is described in detail. These case studies provide further examples of how to apply the presented concepts and algorithms to practical problems.
The author provides web page access to an online bibliography, datasets, source codes for several algorithms described in the book, and other information.
Soft Computing for Knowledge Discovery is for advanced undergraduates,professionals and researchers in computer science, engineering and business information systems who work or have an interest in the dynamic fields of knowledge discovery and soft computing.

Reseña del editor: Knowledge discovery is an area of computer science that attempts to uncover interesting and useful patterns in data that permit a computer to perform a task autonomously or assist a human in performing a task more efficiently.
Soft Computing for Knowledge Discovery provides a self-contained and systematic exposition of the key theory and algorithms that form the core of knowledge discovery from a soft computing perspective. It focuses on knowledge representation, machine learning, and the key methodologies that make up the fabric of soft computing - fuzzy set theory, fuzzy logic, evolutionary computing, and various theories of probability (e.g. naïve Bayes and Bayesian networks, Dempster-Shafer theory, mass assignment theory, and others). In addition to describing many state-of-the-art soft computing approaches to knowledge discovery, the author introduces Cartesian granule features and their corresponding learning algorithms as an intuitive approach to knowledge discovery. This new approach embraces the synergistic spirit of soft computing and exploits uncertainty in order to achieve tractability, transparency and generalization. Parallels are drawn between this approach and other well known approaches (such as naive Bayes and decision trees) leading to equivalences under certain conditions.
The approaches presented are further illustrated in a battery of both artificial and real-world problems. Knowledge discovery in real-world problems, such as object recognition in outdoor scenes, medical diagnosis and control, is described in detail. These case studies provide further examples of how to apply the presented concepts and algorithms to practical problems.
The author provides web page access to an online bibliography, datasets, source codes for several algorithms described in the book, and other information.
Soft Computing for Knowledge Discovery is for advanced undergraduates, professionals and researchers in computer science, engineering and business information systems who work or have an interest in the dynamic fields of knowledge discovery and soft computing.

"Sobre este título" puede pertenecer a otra edición de este libro.

Detalles bibliográficos

Título: Soft Computing for Knowledge Discovery
Editorial: Springer-Verlag New York Inc.
Año de publicación: 2012
Encuadernación: Encuadernación de tapa blanda
Condición: New

Los mejores resultados en AbeBooks

Imagen del vendedor

James G. Shanahan
Publicado por Springer US, 2012
ISBN 10: 1461369479 ISBN 13: 9781461369479
Nuevo Tapa blanda
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Knowledge discovery is an area of computer science that attempts to uncover interesting and useful patterns in data that permit a computer to perform a task autonomously or assist a human in performing a task more efficiently. Soft Computing f. Nº de ref. del artículo: 4195100

Contactar al vendedor

Comprar nuevo

EUR 136,16
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Shanahan, James G.
Publicado por Springer, 2012
ISBN 10: 1461369479 ISBN 13: 9781461369479
Nuevo Tapa blanda

Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: ABLIING23Mar2716030033466

Contactar al vendedor

Comprar nuevo

EUR 158,48
Convertir moneda
Gastos de envío: EUR 64,64
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Shanahan, James G.
Publicado por Springer, 2012
ISBN 10: 1461369479 ISBN 13: 9781461369479
Nuevo Tapa blanda

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9781461369479_new

Contactar al vendedor

Comprar nuevo

EUR 158,80
Convertir moneda
Gastos de envío: EUR 5,16
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

James G. Shanahan
Publicado por Springer, Springer Nov 2012, 2012
ISBN 10: 1461369479 ISBN 13: 9781461369479
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Knowledge discovery is an area of computer science that attempts to uncover interesting and useful patterns in data that permit a computer to perform a task autonomously or assist a human in performing a task more efficiently. Soft Computing for Knowledge Discovery provides a self-contained and systematic exposition of the key theory and algorithms that form the core of knowledge discovery from a soft computing perspective. It focuses on knowledge representation, machine learning, and the key methodologies that make up the fabric of soft computing - fuzzy set theory, fuzzy logic, evolutionary computing, and various theories of probability (e.g. naïve Bayes and Bayesian networks, Dempster-Shafer theory, mass assignment theory, and others). In addition to describing many state-of-the-art soft computing approaches to knowledge discovery, the author introduces Cartesian granule features and their corresponding learning algorithms as an intuitive approach to knowledge discovery. This new approach embraces the synergistic spirit of soft computing and exploits uncertainty in order to achieve tractability, transparency and generalization. Parallels are drawn between this approach and other well known approaches (such as naive Bayes and decision trees) leading to equivalences under certain conditions. The approaches presented are further illustrated in a battery of both artificial and real-world problems. Knowledge discovery in real-world problems, such as object recognition in outdoor scenes, medical diagnosis and control, is described in detail. These case studies provide further examples of how to apply the presented concepts and algorithms to practical problems. The author provides web page access to an online bibliography, datasets, source codes for several algorithms described in the book, and other information. Soft Computing for Knowledge Discovery is for advanced undergraduates,professionals and researchers in computer science, engineering and business information systems who work or have an interest in the dynamic fields of knowledge discovery and soft computing. 352 pp. Englisch. Nº de ref. del artículo: 9781461369479

Contactar al vendedor

Comprar nuevo

EUR 160,49
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

James G. Shanahan
ISBN 10: 1461369479 ISBN 13: 9781461369479
Nuevo Taschenbuch
Impresión bajo demanda

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Knowledge discovery is an area of computer science that attempts to uncover interesting and useful patterns in data that permit a computer to perform a task autonomously or assist a human in performing a task more efficiently.Soft Computing for Knowledge Discovery provides a self-contained and systematic exposition of the key theory and algorithms that form the core of knowledge discovery from a soft computing perspective. It focuses on knowledge representation, machine learning, and the key methodologies that make up the fabric of soft computing - fuzzy set theory, fuzzy logic, evolutionary computing, and various theories of probability (e.g. naïve Bayes and Bayesian networks, Dempster-Shafer theory, mass assignment theory, and others). In addition to describing many state-of-the-art soft computing approaches to knowledge discovery, the author introduces Cartesian granule features and their corresponding learning algorithms as an intuitive approach to knowledge discovery. This new approach embraces the synergistic spirit of soft computing and exploits uncertainty in order to achieve tractability, transparency and generalization. Parallels are drawn between this approach and other well known approaches (such as naive Bayes and decision trees) leading to equivalences under certain conditions.The approaches presented are further illustrated in a battery of both artificial and real-world problems. Knowledge discovery in real-world problems, such as object recognition in outdoor scenes, medical diagnosis and control, is described in detail. These case studies provide further examples of how to apply the presented concepts and algorithms to practical problems.The author provides web page access to an online bibliography, datasets, source codes for several algorithms described in the book, and other information.Soft Computing for Knowledge Discovery is for advanced undergraduates,professionals and researchers in computer science, engineering and business information systems who work or have an interest in the dynamic fields of knowledge discovery and soft computing.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 352 pp. Englisch. Nº de ref. del artículo: 9781461369479

Contactar al vendedor

Comprar nuevo

EUR 160,49
Convertir moneda
Gastos de envío: EUR 35,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

James G. Shanahan
ISBN 10: 1461369479 ISBN 13: 9781461369479
Nuevo Paperback

Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: new. Paperback. Knowledge discovery is an area of computer science that attempts to uncover interesting and useful patterns in data that permit a computer to perform a task autonomously or assist a human in performing a task more efficiently. Soft Computing for Knowledge Discovery provides a self-contained and systematic exposition of the key theory and algorithms that form the core of knowledge discovery from a soft computing perspective. It focuses on knowledge representation, machine learning, and the key methodologies that make up the fabric of soft computing - fuzzy set theory, fuzzy logic, evolutionary computing, and various theories of probability (e.g. naive Bayes and Bayesian networks, Dempster-Shafer theory, mass assignment theory, and others). In addition to describing many state-of-the-art soft computing approaches to knowledge discovery, the author introduces Cartesian granule features and their corresponding learning algorithms as an intuitive approach to knowledge discovery. This new approach embraces the synergistic spirit of soft computing and exploits uncertainty in order to achieve tractability, transparency and generalization. Parallels are drawn between this approach and other well known approaches (such as naive Bayes and decision trees) leading to equivalences under certain conditions. The approaches presented are further illustrated in a battery of both artificial and real-world problems. Knowledge discovery in real-world problems, such as object recognition in outdoor scenes, medical diagnosis and control, is described in detail. These case studies provide further examples of how to apply the presented concepts and algorithms to practical problems. The author provides web page access to an online bibliography, datasets, source codes for several algorithms described in the book, and other information. Soft Computing for Knowledge Discovery is for advanced undergraduates,professionals and researchers in computer science, engineering and business information systems who work or have an interest in the dynamic fields of knowledge discovery and soft computing. Knowledge discovery is an area of computer science that attempts to uncover interesting and useful patterns in data that permit a computer to perform a task autonomously or assist a human in performing a task more efficiently. Soft Computing for Knowledge Discovery provides a self-contained and systematic exposition of the key theory and algorithms that form the core of knowledge discovery from a soft computing perspective. It focuses on knowledge representation, machine learning, and the key methodologies that make up the fabric of soft computing - fuzzy set theory, fuzzy logic, evolutionary computing, and various theories of probability (e.g. naAve Bayes and Bayesian networks, Dempster-Shafer theory, mass assignment theory, and others). In addition to describing many state-of-the-art soft computing approaches to knowledge discovery, the author introduces Cartesian granule features and their corresponding learning algorithms as an intuitive approach to knowledge discovery. This new approach embraces the synergistic spirit of soft computing and exploits uncertainty in order to achieve tractability, transparency and generalization. Parallels are drawn between this approach and other well known approaches (such as naive Bayes and decision trees) leading to equivalences under certain conditions. The approaches presented are further illustrated in a battery of both artificial and real-world problems. Knowledge discovery in real-world problems, such as Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9781461369479

Contactar al vendedor

Comprar nuevo

EUR 162,01
Convertir moneda
Gastos de envío: EUR 64,64
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

James G. Shanahan
Publicado por Springer, Springer, 2012
ISBN 10: 1461369479 ISBN 13: 9781461369479
Nuevo Taschenbuch

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Knowledge discovery is an area of computer science that attempts to uncover interesting and useful patterns in data that permit a computer to perform a task autonomously or assist a human in performing a task more efficiently. Soft Computing for Knowledge Discovery provides a self-contained and systematic exposition of the key theory and algorithms that form the core of knowledge discovery from a soft computing perspective. It focuses on knowledge representation, machine learning, and the key methodologies that make up the fabric of soft computing - fuzzy set theory, fuzzy logic, evolutionary computing, and various theories of probability (e.g. naïve Bayes and Bayesian networks, Dempster-Shafer theory, mass assignment theory, and others). In addition to describing many state-of-the-art soft computing approaches to knowledge discovery, the author introduces Cartesian granule features and their corresponding learning algorithms as an intuitive approach to knowledge discovery. This new approach embraces the synergistic spirit of soft computing and exploits uncertainty in order to achieve tractability, transparency and generalization. Parallels are drawn between this approach and other well known approaches (such as naive Bayes and decision trees) leading to equivalences under certain conditions. The approaches presented are further illustrated in a battery of both artificial and real-world problems. Knowledge discovery in real-world problems, such as object recognition in outdoor scenes, medical diagnosis and control, is described in detail. These case studies provide further examples of how to apply the presented concepts and algorithms to practical problems. The author provides web page access to an online bibliography, datasets, source codes for several algorithms described in the book, and other information. Soft Computing for Knowledge Discovery is for advanced undergraduates,professionals and researchers in computer science, engineering and business information systems who work or have an interest in the dynamic fields of knowledge discovery and soft computing. Nº de ref. del artículo: 9781461369479

Contactar al vendedor

Comprar nuevo

EUR 166,62
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Shanahan, James G.
Publicado por Springer, 2012
ISBN 10: 1461369479 ISBN 13: 9781461369479
Nuevo Tapa blanda

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 19492441-n

Contactar al vendedor

Comprar nuevo

EUR 175,62
Convertir moneda
Gastos de envío: EUR 17,23
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 15 disponibles

Añadir al carrito

Imagen del vendedor

Shanahan, James G.
Publicado por Springer, 2012
ISBN 10: 1461369479 ISBN 13: 9781461369479
Antiguo o usado Tapa blanda

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 19492441

Contactar al vendedor

Comprar usado

EUR 199,09
Convertir moneda
Gastos de envío: EUR 17,23
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 15 disponibles

Añadir al carrito

Imagen de archivo

James G. Shanahan
Publicado por Springer, 2012
ISBN 10: 1461369479 ISBN 13: 9781461369479
Nuevo Tapa blanda

Librería: Books Puddle, New York, NY, Estados Unidos de America

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. pp. 352. Nº de ref. del artículo: 2658568062

Contactar al vendedor

Comprar nuevo

EUR 211,86
Convertir moneda
Gastos de envío: EUR 9,91
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Existen otras 3 copia(s) de este libro

Ver todos los resultados de su búsqueda