Reinforcement Learning Algorithms with Python: Learn, understand, and develop smart algorithms for addressing AI challenges (English)

ANDREA LONZA

ISBN 10: 1789131111 ISBN 13: 9781789131116
Editorial: PACKT PUBLISHING, 2019
Nuevos Encuadernación de tapa blanda

Librería: Brook Bookstore On Demand, Napoli, NA, Italia Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Vendedor de AbeBooks desde 11 de octubre de 2022

Este libro no está disponible en este momento. Puede ver algunos ejemplares similares a continuación.

Descripción

Descripción:

Questo è un articolo print on demand. N° de ref. del artículo 1VISPAPGC1

Denunciar este artículo

Sinopsis:

Develop self-learning algorithms and agents using TensorFlow and other Python tools, frameworks, and libraries

Key Features

  • Learn, develop, and deploy advanced reinforcement learning algorithms to solve a variety of tasks
  • Understand and develop model-free and model-based algorithms for building self-learning agents
  • Work with advanced Reinforcement Learning concepts and algorithms such as imitation learning and evolution strategies

Book Description

Reinforcement Learning (RL) is a popular and promising branch of AI that involves making smarter models and agents that can automatically determine ideal behavior based on changing requirements. This book will help you master RL algorithms and understand their implementation as you build self-learning agents.

Starting with an introduction to the tools, libraries, and setup needed to work in the RL environment, this book covers the building blocks of RL and delves into value-based methods, such as the application of Q-learning and SARSA algorithms. You'll learn how to use a combination of Q-learning and neural networks to solve complex problems. Furthermore, you'll study the policy gradient methods, TRPO, and PPO, to improve performance and stability, before moving on to the DDPG and TD3 deterministic algorithms. This book also covers how imitation learning techniques work and how Dagger can teach an agent to drive. You'll discover evolutionary strategies and black-box optimization techniques, and see how they can improve RL algorithms. Finally, you'll get to grips with exploration approaches, such as UCB and UCB1, and develop a meta-algorithm called ESBAS.

By the end of the book, you'll have worked with key RL algorithms to overcome challenges in real-world applications, and be part of the RL research community.

What you will learn

  • Develop an agent to play CartPole using the OpenAI Gym interface
  • Discover the model-based reinforcement learning paradigm
  • Solve the Frozen Lake problem with dynamic programming
  • Explore Q-learning and SARSA with a view to playing a taxi game
  • Apply Deep Q-Networks (DQNs) to Atari games using Gym
  • Study policy gradient algorithms, including Actor-Critic and REINFORCE
  • Understand and apply PPO and TRPO in continuous locomotion environments
  • Get to grips with evolution strategies for solving the lunar lander problem

Who this book is for

If you are an AI researcher, deep learning user, or anyone who wants to learn reinforcement learning from scratch, this book is for you. You'll also find this reinforcement learning book useful if you want to learn about the advancements in the field. Working knowledge of Python is necessary.

Table of Contents

  1. The Landscape of Reinforcement Learning
  2. Implementing RL Cycle and OpenAI Gym
  3. Solving Problems with Dynamic Programming
  4. Q learning and SARSA Applications
  5. Deep Q-Network
  6. Learning Stochastic and DDPG optimization
  7. TRPO and PPO implementation
  8. DDPG and TD3 Applications
  9. Model-Based RL
  10. Imitation Learning with the DAgger Algorithm
  11. Understanding Black-Box Optimization Algorithms
  12. Developing the ESBAS Algorithm
  13. Practical Implementation for Resolving RL Challenges

Acerca del autor: Andrea Lonza is a deep learning engineer with a great passion for artificial intelligence and a desire to create machines that act intelligently. He has acquired expert knowledge in reinforcement learning, natural language processing, and computer vision through academic and industrial machine learning projects. He has also participated in several Kaggle competitions, achieving high results. He is always looking for compelling challenges and loves to prove himself.

"Sobre este título" puede pertenecer a otra edición de este libro.

Detalles bibliográficos

Título: Reinforcement Learning Algorithms with ...
Editorial: PACKT PUBLISHING
Año de publicación: 2019
Encuadernación: Encuadernación de tapa blanda
Condición: new

Los mejores resultados en AbeBooks

Imagen de archivo

Lonza, Andrea
Publicado por Packt Publishing, 2019
ISBN 10: 1789131111 ISBN 13: 9781789131116
Antiguo o usado paperback

Librería: HPB-Red, Dallas, TX, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

paperback. Condición: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Nº de ref. del artículo: S_429156252

Contactar al vendedor

Comprar usado

EUR 18,78
EUR 3,19 shipping
Se envía dentro de Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Lonza, Andrea
Publicado por Packt Publishing, 2019
ISBN 10: 1789131111 ISBN 13: 9781789131116
Nuevo Tapa blanda

Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: ABLIING23Mar2912160183215

Contactar al vendedor

Comprar nuevo

EUR 34,19
EUR 3,40 shipping
Se envía dentro de Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Lonza, Andrea
Publicado por Packt Publishing 2019-10, 2019
ISBN 10: 1789131111 ISBN 13: 9781789131116
Nuevo PF

Librería: Chiron Media, Wallingford, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

PF. Condición: New. Nº de ref. del artículo: 6666-IUK-9781789131116

Contactar al vendedor

Comprar nuevo

EUR 35,42
EUR 17,64 shipping
Se envía de Reino Unido a Estados Unidos de America

Cantidad disponible: 10 disponibles

Añadir al carrito

Imagen de archivo

Andrea Lonza
Publicado por Packt Publishing Limited, 2019
ISBN 10: 1789131111 ISBN 13: 9781789131116
Nuevo PAP
Impresión bajo demanda

Librería: PBShop.store UK, Fairford, GLOS, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

PAP. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9781789131116

Contactar al vendedor

Comprar nuevo

EUR 38,61
EUR 6,69 shipping
Se envía de Reino Unido a Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Lonza, Andrea
Publicado por Packt Publishing, 2019
ISBN 10: 1789131111 ISBN 13: 9781789131116
Nuevo Tapa blanda

Librería: California Books, Miami, FL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: I-9781789131116

Contactar al vendedor

Comprar nuevo

EUR 38,61
Gastos de envío gratis
Se envía dentro de Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Andrea Lonza
Publicado por Packt Publishing Limited, 2019
ISBN 10: 1789131111 ISBN 13: 9781789131116
Nuevo PAP
Impresión bajo demanda

Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

PAP. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9781789131116

Contactar al vendedor

Comprar nuevo

EUR 43,86
Gastos de envío gratis
Se envía dentro de Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Lonza, Andrea
Publicado por Packt Publishing, 2019
ISBN 10: 1789131111 ISBN 13: 9781789131116
Nuevo Tapa blanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. With this book, you will understand the core concepts and techniques of reinforcement learning. You will take a look into each RL algorithm and will develop your own self-learning algorithms and models. You will optimize the algorithms for better precision,. Nº de ref. del artículo: 448329952

Contactar al vendedor

Comprar nuevo

EUR 44,74
EUR 48,99 shipping
Se envía de Alemania a Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Andrea Lonza
Publicado por Packt Publishing Limited, 2019
ISBN 10: 1789131111 ISBN 13: 9781789131116
Nuevo Paperback / softback
Impresión bajo demanda

Librería: THE SAINT BOOKSTORE, Southport, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days. Nº de ref. del artículo: C9781789131116

Contactar al vendedor

Comprar nuevo

EUR 45,03
EUR 21,18 shipping
Se envía de Reino Unido a Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Andrea Lonza
Publicado por Packt Publishing Limited, GB, 2019
ISBN 10: 1789131111 ISBN 13: 9781789131116
Nuevo Paperback

Librería: Rarewaves.com UK, London, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: New. Develop self-learning algorithms and agents using TensorFlow and other Python tools, frameworks, and librariesKey FeaturesLearn, develop, and deploy advanced reinforcement learning algorithms to solve a variety of tasksUnderstand and develop model-free and model-based algorithms for building self-learning agentsWork with advanced Reinforcement Learning concepts and algorithms such as imitation learning and evolution strategiesBook DescriptionReinforcement Learning (RL) is a popular and promising branch of AI that involves making smarter models and agents that can automatically determine ideal behavior based on changing requirements. This book will help you master RL algorithms and understand their implementation as you build self-learning agents.Starting with an introduction to the tools, libraries, and setup needed to work in the RL environment, this book covers the building blocks of RL and delves into value-based methods, such as the application of Q-learning and SARSA algorithms. You'll learn how to use a combination of Q-learning and neural networks to solve complex problems. Furthermore, you'll study the policy gradient methods, TRPO, and PPO, to improve performance and stability, before moving on to the DDPG and TD3 deterministic algorithms. This book also covers how imitation learning techniques work and how Dagger can teach an agent to drive. You'll discover evolutionary strategies and black-box optimization techniques, and see how they can improve RL algorithms. Finally, you'll get to grips with exploration approaches, such as UCB and UCB1, and develop a meta-algorithm called ESBAS.By the end of the book, you'll have worked with key RL algorithms to overcome challenges in real-world applications, and be part of the RL research community.What you will learnDevelop an agent to play CartPole using the OpenAI Gym interfaceDiscover the model-based reinforcement learning paradigmSolve the Frozen Lake problem with dynamic programmingExplore Q-learning and SARSA with a view to playing a taxi gameApply Deep Q-Networks (DQNs) to Atari games using GymStudy policy gradient algorithms, including Actor-Critic and REINFORCEUnderstand and apply PPO and TRPO in continuous locomotion environmentsGet to grips with evolution strategies for solving the lunar lander problemWho this book is forIf you are an AI researcher, deep learning user, or anyone who wants to learn reinforcement learning from scratch, this book is for you. You'll also find this reinforcement learning book useful if you want to learn about the advancements in the field. Working knowledge of Python is necessary. Nº de ref. del artículo: LU-9781789131116

Contactar al vendedor

Comprar nuevo

EUR 46,03
EUR 74,03 shipping
Se envía de Reino Unido a Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Andrea Lonza
Publicado por Packt Publishing Limited, GB, 2019
ISBN 10: 1789131111 ISBN 13: 9781789131116
Nuevo Paperback

Librería: Rarewaves.com USA, London, LONDO, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: New. Develop self-learning algorithms and agents using TensorFlow and other Python tools, frameworks, and librariesKey FeaturesLearn, develop, and deploy advanced reinforcement learning algorithms to solve a variety of tasksUnderstand and develop model-free and model-based algorithms for building self-learning agentsWork with advanced Reinforcement Learning concepts and algorithms such as imitation learning and evolution strategiesBook DescriptionReinforcement Learning (RL) is a popular and promising branch of AI that involves making smarter models and agents that can automatically determine ideal behavior based on changing requirements. This book will help you master RL algorithms and understand their implementation as you build self-learning agents.Starting with an introduction to the tools, libraries, and setup needed to work in the RL environment, this book covers the building blocks of RL and delves into value-based methods, such as the application of Q-learning and SARSA algorithms. You'll learn how to use a combination of Q-learning and neural networks to solve complex problems. Furthermore, you'll study the policy gradient methods, TRPO, and PPO, to improve performance and stability, before moving on to the DDPG and TD3 deterministic algorithms. This book also covers how imitation learning techniques work and how Dagger can teach an agent to drive. You'll discover evolutionary strategies and black-box optimization techniques, and see how they can improve RL algorithms. Finally, you'll get to grips with exploration approaches, such as UCB and UCB1, and develop a meta-algorithm called ESBAS.By the end of the book, you'll have worked with key RL algorithms to overcome challenges in real-world applications, and be part of the RL research community.What you will learnDevelop an agent to play CartPole using the OpenAI Gym interfaceDiscover the model-based reinforcement learning paradigmSolve the Frozen Lake problem with dynamic programmingExplore Q-learning and SARSA with a view to playing a taxi gameApply Deep Q-Networks (DQNs) to Atari games using GymStudy policy gradient algorithms, including Actor-Critic and REINFORCEUnderstand and apply PPO and TRPO in continuous locomotion environmentsGet to grips with evolution strategies for solving the lunar lander problemWho this book is forIf you are an AI researcher, deep learning user, or anyone who wants to learn reinforcement learning from scratch, this book is for you. You'll also find this reinforcement learning book useful if you want to learn about the advancements in the field. Working knowledge of Python is necessary. Nº de ref. del artículo: LU-9781789131116

Contactar al vendedor

Comprar nuevo

EUR 49,59
Gastos de envío gratis
Se envía de Reino Unido a Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Existen otras 4 copia(s) de este libro

Ver todos los resultados de su búsqueda