The Regression Model of Machine Translation: Learning, Instance Selection, Decoding, and Evaluation

Mehmet Ergun Biçici

ISBN 10: 3846507490 ISBN 13: 9783846507490
Editorial: LAP LAMBERT Academic Publishing, 2011
Nuevos Paperback

Librería: Revaluation Books, Exeter, Reino Unido Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Vendedor de AbeBooks desde 6 de enero de 2003

Este artículo en concreto ya no está disponible.

Descripción

Descripción:

172 pages. 8.66x5.91x0.39 inches. In Stock. N° de ref. del artículo 3846507490

Denunciar este artículo

Sinopsis:

Regression based machine translation (RegMT) model provides a learning framework for machine translation, separating learning models for training, training instance selection, feature representation, and decoding. Transductive learning approach employs training instance selection algorithms that not only make RegMT computationally more scalable but also improve the performance of standard statistical machine translation (SMT) systems. Sparse regression models for SMT are introduced and the obtained results demonstrate that sparse regression models perform better than other learning models in predicting target features, estimating word alignments, creating phrase tables, and generating translation outputs. We develop good evaluation techniques for measuring the performance of the RegMT model and the quality of the translations. We demonstrate that sparse L1 regularized regression performs better than L2 regularized regression in the German-English translation task and in the Spanish-English translation task when using small sized training sets. Graph based decoding can provide an alternative to phrase-based decoding in translation domains having low vocabulary.

Reseña del editor: Regression based machine translation (RegMT) model provides a learning framework for machine translation, separating learning models for training, training instance selection, feature representation, and decoding. Transductive learning approach employs training instance selection algorithms that not only make RegMT computationally more scalable but also improve the performance of standard statistical machine translation (SMT) systems. Sparse regression models for SMT are introduced and the obtained results demonstrate that sparse regression models perform better than other learning models in predicting target features, estimating word alignments, creating phrase tables, and generating translation outputs. We develop good evaluation techniques for measuring the performance of the RegMT model and the quality of the translations. We demonstrate that sparse L1 regularized regression performs better than L2 regularized regression in the German-English translation task and in the Spanish-English translation task when using small sized training sets. Graph based decoding can provide an alternative to phrase-based decoding in translation domains having low vocabulary.

"Sobre este título" puede pertenecer a otra edición de este libro.

Detalles bibliográficos

Título: The Regression Model of Machine Translation:...
Editorial: LAP LAMBERT Academic Publishing
Año de publicación: 2011
Encuadernación: Paperback
Condición: Brand New

Los mejores resultados en AbeBooks

Imagen del vendedor

Mehmet Ergun Biçici
Publicado por LAP LAMBERT Academic Publishing, 2011
ISBN 10: 3846507490 ISBN 13: 9783846507490
Nuevo Tapa blanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 5495410

Contactar al vendedor

Comprar nuevo

EUR 55,21
EUR 48,99 shipping
Se envía de Alemania a Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Mehmet Ergun Biçici
Publicado por LAP LAMBERT Academic Publishing, 2011
ISBN 10: 3846507490 ISBN 13: 9783846507490
Nuevo Taschenbuch
Impresión bajo demanda

Librería: preigu, Osnabrück, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. The Regression Model of Machine Translation | Learning, Instance Selection, Decoding, and Evaluation | Mehmet Ergun Biçici | Taschenbuch | 172 S. | Englisch | 2011 | LAP LAMBERT Academic Publishing | EAN 9783846507490 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu Print on Demand. Nº de ref. del artículo: 106736446

Contactar al vendedor

Comprar nuevo

EUR 57,40
EUR 70,00 shipping
Se envía de Alemania a Estados Unidos de America

Cantidad disponible: 5 disponibles

Añadir al carrito

Imagen del vendedor

Mehmet Ergun Biçici
Publicado por LAP LAMBERT Academic Publishing, 2011
ISBN 10: 3846507490 ISBN 13: 9783846507490
Nuevo Taschenbuch
Impresión bajo demanda

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Regression based machine translation (RegMT) model provides a learning framework for machine translation, separating learning models for training, training instance selection, feature representation, and decoding. Transductive learning approach employs training instance selection algorithms that not only make RegMT computationally more scalable but also improve the performance of standard statistical machine translation (SMT) systems. Sparse regression models for SMT are introduced and the obtained results demonstrate that sparse regression models perform better than other learning models in predicting target features, estimating word alignments, creating phrase tables, and generating translation outputs. We develop good evaluation techniques for measuring the performance of the RegMT model and the quality of the translations. We demonstrate that sparse L1 regularized regression performs better than L2 regularized regression in the German-English translation task and in the Spanish-English translation task when using small sized training sets. Graph based decoding can provide an alternative to phrase-based decoding in translation domains having low vocabulary. Nº de ref. del artículo: 9783846507490

Contactar al vendedor

Comprar nuevo

EUR 68,00
EUR 61,37 shipping
Se envía de Alemania a Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Mehmet Ergun Biçici
ISBN 10: 3846507490 ISBN 13: 9783846507490
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Regression based machine translation (RegMT) model provides a learning framework for machine translation, separating learning models for training, training instance selection, feature representation, and decoding. Transductive learning approach employs training instance selection algorithms that not only make RegMT computationally more scalable but also improve the performance of standard statistical machine translation (SMT) systems. Sparse regression models for SMT are introduced and the obtained results demonstrate that sparse regression models perform better than other learning models in predicting target features, estimating word alignments, creating phrase tables, and generating translation outputs. We develop good evaluation techniques for measuring the performance of the RegMT model and the quality of the translations. We demonstrate that sparse L1 regularized regression performs better than L2 regularized regression in the German-English translation task and in the Spanish-English translation task when using small sized training sets. Graph based decoding can provide an alternative to phrase-based decoding in translation domains having low vocabulary. 172 pp. Englisch. Nº de ref. del artículo: 9783846507490

Contactar al vendedor

Comprar nuevo

EUR 68,00
EUR 23,00 shipping
Se envía de Alemania a Estados Unidos de America

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Mehmet Ergun Biçici
ISBN 10: 3846507490 ISBN 13: 9783846507490
Nuevo Taschenbuch

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Neuware -Regression based machine translation (RegMT) model provides a learning framework for machine translation, separating learning models for training, training instance selection, feature representation, and decoding. Transductive learning approach employs training instance selection algorithms that not only make RegMT computationally more scalable but also improve the performance of standard statistical machine translation (SMT) systems. Sparse regression models for SMT are introduced and the obtained results demonstrate that sparse regression models perform better than other learning models in predicting target features, estimating word alignments, creating phrase tables, and generating translation outputs. We develop good evaluation techniques for measuring the performance of the RegMT model and the quality of the translations. We demonstrate that sparse L1 regularized regression performs better than L2 regularized regression in the German-English translation task and in the Spanish-English translation task when using small sized training sets. Graph based decoding can provide an alternative to phrase-based decoding in translation domains having low vocabulary.Books on Demand GmbH, Überseering 33, 22297 Hamburg 172 pp. Englisch. Nº de ref. del artículo: 9783846507490

Contactar al vendedor

Comprar nuevo

EUR 68,00
EUR 60,00 shipping
Se envía de Alemania a Estados Unidos de America

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Mehmet Ergun Biçici
Publicado por LAP LAMBERT Academic Publishing, 2011
ISBN 10: 3846507490 ISBN 13: 9783846507490
Nuevo Paperback

Librería: Revaluation Books, Exeter, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: Brand New. 172 pages. 8.66x5.91x0.39 inches. In Stock. Nº de ref. del artículo: __3846507490

Contactar al vendedor

Comprar nuevo

EUR 131,41
EUR 11,42 shipping
Se envía de Reino Unido a Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito