Sinopsis
Assuming only an elementary background in discrete mathematics, this 2005 textbook is designed to accompany an introductory course on the probabilistic techniques and paradigms used in the development of probabilistic algorithms and analyses, including random sampling, expectations, Markov's and Chevyshev's inequalities, Chernoff bounds, balls and bins models, the probabilistic method, Markov chains, MCMC, martingales and entropy.
Acerca de los autores
Michael Miztenmacher is a John L. Loeb Associate Professor in Computer Science at Harvard University. Having written nearly 100 articles on a variety of topics in computer science, his research focuses on randomized algorithms and networks. He has received an NSF CAREER Award and an Alfred P. Sloan Research Fellowship. In 2002, he shared the IEEE Information Theory Society Best Paper Award for his work on error-correcting codes.
Eli Upfal is Professor and Chair of Computer Science at Brown University. He has published more than 100 papers in refereed journals and professional conferences, and is the inventor of more than ten patents. His main research interests are randomized computation and probabilistic analysis of algorithms, with applications to optimization algorithms, communication networks, parallel and distributed computing and computational biology.
"Sobre este título" puede pertenecer a otra edición de este libro.