Make Your Own Neural Network: An In-depth Visual Introduction For Beginners

Taylor, Michael

ISBN 10: 1549869132 ISBN 13: 9781549869136
Editorial: Independently published, 2017
Usado Encuadernación de tapa blanda

Librería: Dream Books Co., Denver, CO, Estados Unidos de America Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Vendedor de AbeBooks desde 23 de noviembre de 2023

Este artículo en concreto ya no está disponible.

Descripción

Descripción:

Gently used with minimal wear on the corners and cover. A few pages may contain light highlighting or writing, but the text remains fully legible. Dust jacket may be missing, and supplemental materials like CDs or codes may not be included. May be ex-library with library markings. Ships promptly! N° de ref. del artículo DBV.1549869132.G

Denunciar este artículo

Sinopsis:

A step-by-step visual journey through the mathematics of neural networks, and making your own using Python and Tensorflow.

What you will gain from this book:

* A deep understanding of how a Neural Network works. * How to build a Neural Network from scratch using Python.

Who this book is for:

* Beginners who want to fully understand how networks work, and learn to build two step-by-step examples in Python. * Programmers who need an easy to read, but solid refresher, on the math of neural networks.

What’s Inside - ‘Make Your Own Neural Network: An Indepth Visual Introduction For Beginners’

What Is a Neural Network?

Neural networks have made a gigantic comeback in the last few decades and you likely make use of them everyday without realizing it, but what exactly is a neural network? What is it used for and how does it fit within the broader arena of machine learning?

we gently explore these topics so that we can be prepared to dive deep further on. To start, we’ll begin with a high-level overview of machine learning and then drill down into the specifics of a neural network.

The Math of Neural Networks

On a high level, a network learns just like we do, through trial and error. This is true regardless if the network is supervised, unsupervised, or semi-supervised. Once we dig a bit deeper though, we discover that a handful of mathematical functions play a major role in the trial and error process. It also becomes clear that a grasp of the underlying mathematics helps clarify how a network learns.

* Forward Propagation * Calculating The Total Error * Calculating The Gradients * Updating The Weights

Make Your Own Artificial Neural Network: Hands on Example

You will learn to build a simple neural network using all the concepts and functions we learned in the previous few chapters. Our example will be basic but hopefully very intuitive. Many examples available online are either hopelessly abstract or make use of the same data sets, which can be repetitive. Our goal is to be crystal clear and engaging, but with a touch of fun and uniqueness. This section contains the following eight chapters.

Building Neural Networks in Python

There are many ways to build a neural network and lots of tools to get the job done. This is fantastic, but it can also be overwhelming when you start, because there are so many tools to choose from. We are going to take a look at what tools are needed and help you nail down the essentials. To build a neural network

Tensorflow and Neural Networks

There is no single way to build a feedforward neural network with Python, and that is especially true if you throw Tensorflow into the mix. However, there is a general framework that exists that can be divided into five steps and grouped into two parts. We are going to briefly explore these five steps so that we are prepared to use them to build a network later on. Ready? Let’s begin.

Neural Network: Distinguish Handwriting

We are going to dig deep with Tensorflow and build a neural network that can distinguish between handwritten numbers. We’ll use the same 5 steps we covered in the high-level overview, and we are going to take time exploring each line of code.

Neural Network: Classify Images

10 minutes. That’s all it takes to build an image classifier thanks to Google! We will provide a high-level overview of how to classify images using a convolutional neural network (CNN) and Google’s Inception V3 model. Once finished, you will be able to tweak this code to classify any type of image sets! Cats, bats, super heroes - the sky’s the limit.

Reseña del editor:

A step-by-step visual journey through the mathematics of neural networks, and making your own using Python and Tensorflow.

What you will gain from this book:

* A deep understanding of how a Neural Network works. * How to build a Neural Network from scratch using Python.

Who this book is for:

* Beginners who want to fully understand how networks work, and learn to build two step-by-step examples in Python. * Programmers who need an easy to read, but solid refresher, on the math of neural networks.

What’s Inside - ‘Make Your Own Neural Network: An Indepth Visual Introduction For Beginners’

What Is a Neural Network?

Neural networks have made a gigantic comeback in the last few decades and you likely make use of them everyday without realizing it, but what exactly is a neural network? What is it used for and how does it fit within the broader arena of machine learning?

we gently explore these topics so that we can be prepared to dive deep further on. To start, we’ll begin with a high-level overview of machine learning and then drill down into the specifics of a neural network.

The Math of Neural Networks

On a high level, a network learns just like we do, through trial and error. This is true regardless if the network is supervised, unsupervised, or semi-supervised. Once we dig a bit deeper though, we discover that a handful of mathematical functions play a major role in the trial and error process. It also becomes clear that a grasp of the underlying mathematics helps clarify how a network learns.

* Forward Propagation * Calculating The Total Error * Calculating The Gradients * Updating The Weights

Make Your Own Artificial Neural Network: Hands on Example

You will learn to build a simple neural network using all the concepts and functions we learned in the previous few chapters. Our example will be basic but hopefully very intuitive. Many examples available online are either hopelessly abstract or make use of the same data sets, which can be repetitive. Our goal is to be crystal clear and engaging, but with a touch of fun and uniqueness. This section contains the following eight chapters.

Building Neural Networks in Python

There are many ways to build a neural network and lots of tools to get the job done. This is fantastic, but it can also be overwhelming when you start, because there are so many tools to choose from. We are going to take a look at what tools are needed and help you nail down the essentials. To build a neural network

Tensorflow and Neural Networks

There is no single way to build a feedforward neural network with Python, and that is especially true if you throw Tensorflow into the mix. However, there is a general framework that exists that can be divided into five steps and grouped into two parts. We are going to briefly explore these five steps so that we are prepared to use them to build a network later on. Ready? Let’s begin.

Neural Network: Distinguish Handwriting

We are going to dig deep with Tensorflow and build a neural network that can distinguish between handwritten numbers. We’ll use the same 5 steps we covered in the high-level overview, and we are going to take time exploring each line of code.

Neural Network: Classify Images

10 minutes. That’s all it takes to build an image classifier thanks to Google! We will provide a high-level overview of how to classify images using a convolutional neural network (CNN) and Google’s Inception V3 model. Once finished, you will be able to tweak this code to classify any type of image sets! Cats, bats, super heroes - the sky’s the limit.

"Sobre este título" puede pertenecer a otra edición de este libro.

Detalles bibliográficos

Título: Make Your Own Neural Network: An In-depth ...
Editorial: Independently published
Año de publicación: 2017
Encuadernación: Encuadernación de tapa blanda
Condición: good

Los mejores resultados en AbeBooks

Imagen de archivo

Taylor, Michael
Publicado por Independently published, 2017
ISBN 10: 1549869132 ISBN 13: 9781549869136
Antiguo o usado Tapa blanda

Librería: World of Books (was SecondSale), Montgomery, IL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: Good. Item in good condition. Textbooks may not include supplemental items i.e. CDs, access codes etc. Nº de ref. del artículo: 00092540109

Contactar al vendedor

Comprar usado

EUR 3,41
Gastos de envío gratis
Se envía dentro de Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Taylor, Michael
Publicado por Independently published, 2017
ISBN 10: 1549869132 ISBN 13: 9781549869136
Antiguo o usado Tapa blanda

Librería: Books for Life, LAUREL, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: very_good. Book is in very good condition. Clean with little to no signs of wear or markings highlights. Nº de ref. del artículo: LFM.7AHV

Contactar al vendedor

Comprar usado

EUR 4,10
Gastos de envío gratis
Se envía dentro de Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Taylor, Michael
Publicado por Independently published, 2017
ISBN 10: 1549869132 ISBN 13: 9781549869136
Antiguo o usado Tapa blanda

Librería: Goodwill Southern California, Los Angeles, CA, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: good. Paperback Book. Nº de ref. del artículo: LACV.1549869132.G

Contactar al vendedor

Comprar usado

EUR 6,14
EUR 2,55 shipping
Se envía dentro de Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Taylor, Michael
Publicado por Independently published, 2017
ISBN 10: 1549869132 ISBN 13: 9781549869136
Antiguo o usado Tapa blanda

Librería: medimops, Berlin, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: good. Befriedigend/Good: Durchschnittlich erhaltenes Buch bzw. Schutzumschlag mit Gebrauchsspuren, aber vollständigen Seiten. / Describes the average WORN book or dust jacket that has all the pages present. Nº de ref. del artículo: M01549869132-G

Contactar al vendedor

Comprar usado

EUR 8,30
EUR 105,00 shipping
Se envía de Alemania a Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Taylor, Michael
Publicado por Independently published, 2017
ISBN 10: 1549869132 ISBN 13: 9781549869136
Antiguo o usado Tapa blanda

Librería: medimops, Berlin, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: very good. Gut/Very good: Buch bzw. Schutzumschlag mit wenigen Gebrauchsspuren an Einband, Schutzumschlag oder Seiten. / Describes a book or dust jacket that does show some signs of wear on either the binding, dust jacket or pages. Nº de ref. del artículo: M01549869132-V

Contactar al vendedor

Comprar usado

EUR 8,30
EUR 105,00 shipping
Se envía de Alemania a Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Taylor, Michael
Publicado por Independently published, 2017
ISBN 10: 1549869132 ISBN 13: 9781549869136
Nuevo paperback

Librería: Cycle Books LA, South el monte, CA, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

paperback. Condición: New. Nº de ref. del artículo: mon0000004156

Contactar al vendedor

Comprar nuevo

EUR 8,79
EUR 2,55 shipping
Se envía dentro de Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Michael Taylor
Publicado por Independently published, 2017
ISBN 10: 1549869132 ISBN 13: 9781549869136
Nuevo Paperback

Librería: Revaluation Books, Exeter, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: Brand New. 248 pages. 8.90x5.91x0.79 inches. In Stock. Nº de ref. del artículo: zk1549869132

Contactar al vendedor

Comprar nuevo

EUR 17,28
EUR 11,47 shipping
Se envía de Reino Unido a Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito