Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation

Andrzej Cichocki

ISBN 10: 0470746661 ISBN 13: 9780470746660
Editorial: John Wiley & Sons Inc, 2009
Nuevos Encuadernación de tapa dura

Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Vendedor de AbeBooks desde 9 de octubre de 2009

Este artículo en concreto ya no está disponible.

Descripción

Descripción:

This book provides a broad survey of models and efficient algorithms for Nonnegative Matrix Factorization (NMF). This includes NMF's various extensions and modifications, especially Nonnegative Tensor Factorizations (NTF) and Nonnegative Tucker Decompositions (NTD). Num Pages: 500 pages, Illustrations. BIC Classification: TCB; TJ; UMZ. Category: (P) Professional & Vocational. Dimension: 251 x 176 x 30. Weight in Grams: 1208. . 2009. 1st Edition. Hardcover. . . . . Books ship from the US and Ireland. N° de ref. del artículo V9780470746660

Denunciar este artículo

Sinopsis:

This book provides a broad survey of models and efficient algorithms for Nonnegative Matrix Factorization (NMF). This includes NMF’s various extensions and modifications, especially Nonnegative Tensor Factorizations (NTF) and Nonnegative Tucker Decompositions (NTD). NMF/NTF and their extensions are increasingly used as tools in signal and image processing, and data analysis, having garnered interest due to their capability to provide new insights and relevant information about the complex latent relationships in experimental data sets. It is suggested that NMF can provide meaningful components with physical interpretations; for example, in bioinformatics, NMF and its extensions have been successfully applied to gene expression, sequence analysis, the functional characterization of genes, clustering and text mining. As such, the authors focus on the algorithms that are most useful in practice, looking at the fastest, most robust, and suitable for large-scale models.

Key features:

  • Acts as a single source reference guide to NMF, collating information that is widely dispersed in current literature, including the authors’ own recently developed techniques in the subject area.
  • Uses generalized cost functions such as Bregman, Alpha and Beta divergences, to present practical implementations of several types of robust algorithms, in particular Multiplicative, Alternating Least Squares, Projected Gradient and Quasi Newton algorithms.
  • Provides a comparative analysis of the different methods in order to identify approximation error and complexity.
  • Includes pseudo codes and optimized MATLAB source codes for almost all algorithms presented in the book.

The increasing interest in nonnegative matrix and tensor factorizations, as well as decompositions and sparse representation of data, will ensure that this book is essential reading for engineers, scientists, researchers, industry practitioners and graduate students across signal and image processing; neuroscience; data mining and data analysis; computer science; bioinformatics; speech processing; biomedical engineering; and multimedia.

Acerca del autor:

Andrzej Cichocki, Laboratory for Advanced Brain Signal Processing, Riken Brain Science Institute, Japan
Professor Cichocki is head of the Laboratory for Advanced Brain Signal Processing. He has co-authored more than one hundred technical papers, and is the author of three previous books of which two are published by Wiley. His most recent book is Adaptive Blind Signal and Image Processing with Professor Shun-ichi Amari (Wiley, 2002). He is Editor-in-Chief of International Journal Computational Intelligence and Neuroscience and Associate Editor of IEEE Transactions on Neural Networks.

Shun-ichi Amari, Laboratory for Mathematical Neuroscience, Riken Brain Science Institute, Japan
Professor Amari is head of the Laboratory for Mathematical Neuroscience, as well as vice-president of the Riken Brain Science Institute. He serves on editorial boards for numerous journals including Applied Intelligence, Journal of Mathematical Systems and Control and Annals of Institute of Statistical Mathematics. He is the co-author of three books, and more than three hundred technical papers.

Rafal Zdunek, Institute of Telecommunications, Teleinformatics and Acoustics, Wroclaw University of Technology, Poland

Associate Professor Zdunek is currently a lecturer at the Wroclaw University of Technology, Poland and up until recently was a visiting research scientist at the Riken Brain Science Institute. He is a member of the IEEE: Signal Processing Society, Communications Society and a member of the Society of Polish Electrical Engineers. Dr Zdunek has guest co-edited with Professor Cichocki amongst others, a special issue on Advances in Non-negative Matrix and Tensor Factorization in the journal, Computational Intelligence and Neuroscience (published May 08).

Anh Huy Phan, Laboratory for Advanced Brain Signal Processing, Riken Brain Science Institute, Japan
Anh Huy Phan is a researcher at the Laboratory for Advanced Brian Signal Processing at the Riken Brain Science Institute.

"Sobre este título" puede pertenecer a otra edición de este libro.

Detalles bibliográficos

Título: Nonnegative Matrix and Tensor Factorizations...
Editorial: John Wiley & Sons Inc
Año de publicación: 2009
Encuadernación: Encuadernación de tapa dura
Condición: New

Los mejores resultados en AbeBooks

Imagen de archivo

Andrzej Cichocki, Rafal Zdunek, Anh Huy Phan
Publicado por John Wiley & Sons, 2009
ISBN 10: 0470746661 ISBN 13: 9780470746660
Antiguo o usado Tapa dura

Librería: Buchpark, Trebbin, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: Sehr gut. Zustand: Sehr gut | Seiten: 500 | Sprache: Englisch | Produktart: Bücher | Keine Beschreibung verfügbar. Nº de ref. del artículo: 5783315/202

Contactar al vendedor

Comprar usado

EUR 70,41
EUR 105,00 shipping
Se envía de Alemania a Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Cichocki, Andrzej; Zdunek, Rafal; Phan, Anh Huy; Amari, Shun-Ichi
Publicado por Wiley, 2009
ISBN 10: 0470746661 ISBN 13: 9780470746660
Nuevo Tapa dura

Librería: GreatBookPricesUK, Woodford Green, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 6009435-n

Contactar al vendedor

Comprar nuevo

EUR 123,77
EUR 17,08 shipping
Se envía de Reino Unido a Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

A Cichocki
Publicado por Wiley, 2009
ISBN 10: 0470746661 ISBN 13: 9780470746660
Nuevo Tapa dura

Librería: PBShop.store UK, Fairford, GLOS, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

HRD. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: FW-9780470746660

Contactar al vendedor

Comprar nuevo

EUR 123,78
EUR 7,70 shipping
Se envía de Reino Unido a Estados Unidos de America

Cantidad disponible: 15 disponibles

Añadir al carrito

Imagen del vendedor

A Cichocki
Publicado por John Wiley & Sons, 2009
ISBN 10: 0470746661 ISBN 13: 9780470746660
Nuevo Tapa dura

Librería: moluna, Greven, Alemania

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. This book provides a broad survey of models and efficient algorithms for Nonnegative Matrix Factorization (NMF). This includes NMF s various extensions and modifications, especially Nonnegative Tensor Factorizations (NTF) and Nonnegative Tucker Decompositio. Nº de ref. del artículo: 594698498

Contactar al vendedor

Comprar nuevo

EUR 132,69
EUR 48,99 shipping
Se envía de Alemania a Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Cichocki, Andrzej; Zdunek, Rafal; Phan, Anh Huy; Amari, Shun-Ichi
Publicado por Wiley, 2009
ISBN 10: 0470746661 ISBN 13: 9780470746660
Nuevo Tapa dura

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 6009435-n

Contactar al vendedor

Comprar nuevo

EUR 133,10
EUR 2,25 shipping
Se envía dentro de Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Andrzej Cichocki
Publicado por John Wiley & Sons Inc, New York, 2009
ISBN 10: 0470746661 ISBN 13: 9780470746660
Nuevo Tapa dura Original o primera edición

Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: new. Hardcover. This book provides a broad survey of models and efficient algorithms for Nonnegative Matrix Factorization (NMF). This includes NMFs various extensions and modifications, especially Nonnegative Tensor Factorizations (NTF) and Nonnegative Tucker Decompositions (NTD). NMF/NTF and their extensions are increasingly used as tools in signal and image processing, and data analysis, having garnered interest due to their capability to provide new insights and relevant information about the complex latent relationships in experimental data sets. It is suggested that NMF can provide meaningful components with physical interpretations; for example, in bioinformatics, NMF and its extensions have been successfully applied to gene expression, sequence analysis, the functional characterization of genes, clustering and text mining. As such, the authors focus on the algorithms that are most useful in practice, looking at the fastest, most robust, and suitable for large-scale models. Key features: Acts as a single source reference guide to NMF, collating information that is widely dispersed in current literature, including the authors own recently developed techniques in the subject area.Uses generalized cost functions such as Bregman, Alpha and Beta divergences, to present practical implementations of several types of robust algorithms, in particular Multiplicative, Alternating Least Squares, Projected Gradient and Quasi Newton algorithms.Provides a comparative analysis of the different methods in order to identify approximation error and complexity.Includes pseudo codes and optimized MATLAB source codes for almost all algorithms presented in the book. The increasing interest in nonnegative matrix and tensor factorizations, as well as decompositions and sparse representation of data, will ensure that this book is essential reading for engineers, scientists, researchers, industry practitioners and graduate students across signal and image processing; neuroscience; data mining and data analysis; computer science; bioinformatics; speech processing; biomedical engineering; and multimedia. This book provides a broad survey of models and efficient algorithms for Nonnegative Matrix Factorization (NMF). This includes NMF's various extensions and modifications, especially Nonnegative Tensor Factorizations (NTF) and Nonnegative Tucker Decompositions (NTD). Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9780470746660

Contactar al vendedor

Comprar nuevo

EUR 135,41
Gastos de envío gratis
Se envía dentro de Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Cichocki, Andrzej; Zdunek, Rafal; Phan, Anh Huy; Amari, Shun-Ichi
Publicado por Wiley, 2009
ISBN 10: 0470746661 ISBN 13: 9780470746660
Antiguo o usado Tapa dura

Librería: GreatBookPricesUK, Woodford Green, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 6009435

Contactar al vendedor

Comprar usado

EUR 136,13
EUR 17,08 shipping
Se envía de Reino Unido a Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Cichocki, Andrzej; Zdunek, Rafal; Phan, Anh Huy; Amari, Shun-Ichi
Publicado por Wiley, 2009
ISBN 10: 0470746661 ISBN 13: 9780470746660
Antiguo o usado Tapa dura

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 6009435

Contactar al vendedor

Comprar usado

EUR 136,35
EUR 2,25 shipping
Se envía dentro de Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Andrzej Cichocki
Publicado por John Wiley & Sons Inc, New York, 2009
ISBN 10: 0470746661 ISBN 13: 9780470746660
Nuevo Tapa dura Original o primera edición

Librería: CitiRetail, Stevenage, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: new. Hardcover. This book provides a broad survey of models and efficient algorithms for Nonnegative Matrix Factorization (NMF). This includes NMFs various extensions and modifications, especially Nonnegative Tensor Factorizations (NTF) and Nonnegative Tucker Decompositions (NTD). NMF/NTF and their extensions are increasingly used as tools in signal and image processing, and data analysis, having garnered interest due to their capability to provide new insights and relevant information about the complex latent relationships in experimental data sets. It is suggested that NMF can provide meaningful components with physical interpretations; for example, in bioinformatics, NMF and its extensions have been successfully applied to gene expression, sequence analysis, the functional characterization of genes, clustering and text mining. As such, the authors focus on the algorithms that are most useful in practice, looking at the fastest, most robust, and suitable for large-scale models. Key features: Acts as a single source reference guide to NMF, collating information that is widely dispersed in current literature, including the authors own recently developed techniques in the subject area.Uses generalized cost functions such as Bregman, Alpha and Beta divergences, to present practical implementations of several types of robust algorithms, in particular Multiplicative, Alternating Least Squares, Projected Gradient and Quasi Newton algorithms.Provides a comparative analysis of the different methods in order to identify approximation error and complexity.Includes pseudo codes and optimized MATLAB source codes for almost all algorithms presented in the book. The increasing interest in nonnegative matrix and tensor factorizations, as well as decompositions and sparse representation of data, will ensure that this book is essential reading for engineers, scientists, researchers, industry practitioners and graduate students across signal and image processing; neuroscience; data mining and data analysis; computer science; bioinformatics; speech processing; biomedical engineering; and multimedia. This book provides a broad survey of models and efficient algorithms for Nonnegative Matrix Factorization (NMF). This includes NMF's various extensions and modifications, especially Nonnegative Tensor Factorizations (NTF) and Nonnegative Tucker Decompositions (NTD). Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Nº de ref. del artículo: 9780470746660

Contactar al vendedor

Comprar nuevo

EUR 141,35
EUR 42,14 shipping
Se envía de Reino Unido a Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Andrzej Cichocki
Publicado por John Wiley & Sons Inc, New York, 2009
ISBN 10: 0470746661 ISBN 13: 9780470746660
Nuevo Tapa dura Original o primera edición

Librería: AussieBookSeller, Truganina, VIC, Australia

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: new. Hardcover. This book provides a broad survey of models and efficient algorithms for Nonnegative Matrix Factorization (NMF). This includes NMFs various extensions and modifications, especially Nonnegative Tensor Factorizations (NTF) and Nonnegative Tucker Decompositions (NTD). NMF/NTF and their extensions are increasingly used as tools in signal and image processing, and data analysis, having garnered interest due to their capability to provide new insights and relevant information about the complex latent relationships in experimental data sets. It is suggested that NMF can provide meaningful components with physical interpretations; for example, in bioinformatics, NMF and its extensions have been successfully applied to gene expression, sequence analysis, the functional characterization of genes, clustering and text mining. As such, the authors focus on the algorithms that are most useful in practice, looking at the fastest, most robust, and suitable for large-scale models. Key features: Acts as a single source reference guide to NMF, collating information that is widely dispersed in current literature, including the authors own recently developed techniques in the subject area.Uses generalized cost functions such as Bregman, Alpha and Beta divergences, to present practical implementations of several types of robust algorithms, in particular Multiplicative, Alternating Least Squares, Projected Gradient and Quasi Newton algorithms.Provides a comparative analysis of the different methods in order to identify approximation error and complexity.Includes pseudo codes and optimized MATLAB source codes for almost all algorithms presented in the book. The increasing interest in nonnegative matrix and tensor factorizations, as well as decompositions and sparse representation of data, will ensure that this book is essential reading for engineers, scientists, researchers, industry practitioners and graduate students across signal and image processing; neuroscience; data mining and data analysis; computer science; bioinformatics; speech processing; biomedical engineering; and multimedia. This book provides a broad survey of models and efficient algorithms for Nonnegative Matrix Factorization (NMF). This includes NMF's various extensions and modifications, especially Nonnegative Tensor Factorizations (NTF) and Nonnegative Tucker Decompositions (NTD). Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Nº de ref. del artículo: 9780470746660

Contactar al vendedor

Comprar nuevo

EUR 144,14
EUR 31,51 shipping
Se envía de Australia a Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Existen otras 11 copia(s) de este libro

Ver todos los resultados de su búsqueda