Multistrategy Learning: A Special Issue of MACHINE LEARNING

N/A

ISBN 10: 0792393740 ISBN 13: 9780792393740
Editorial: Springer, 1993
Nuevos Encuadernación de tapa dura

Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Vendedor de AbeBooks desde 9 de octubre de 2009

Este artículo en concreto ya no está disponible.

Descripción

Descripción:

1993. Hardcover. . . . . . Books ship from the US and Ireland. N° de ref. del artículo V9780792393740

Denunciar este artículo

Sinopsis:

Most machine learning research has been concerned with the development of systems that implememnt one type of inference within a single representational paradigm. Such systems, which can be called monostrategy learning systems, include those for empirical induction of decision trees or rules, explanation-based generalization, neural net learning from examples, genetic algorithm-based learning, and others. Monostrategy learning systems can be very effective and useful if learning problems to which they are applied are sufficiently narrowly defined.
Many real-world applications, however, pose learning problems that go beyond the capability of monostrategy learning methods. In view of this, recent years have witnessed a growing interest in developing multistrategy systems, which integrate two or more inference types and/or paradigms within one learning system. Such multistrategy systems take advantage of the complementarity of different inference types or representational mechanisms. Therefore, they have a potential to be more versatile and more powerful than monostrategy systems. On the other hand, due to their greater complexity, their development is significantly more difficult and represents a new great challenge to the machine learning community.
Multistrategy Learning contains contributions characteristic of the current research in this area.

Reseña del editor: Most machine learning research has been concerned with the development of systems that implememnt one type of inference within a single representational paradigm. Such systems, which can be called monostrategy learning systems, include those for empirical induction of decision trees or rules, explanation-based generalization, neural net learning from examples, genetic algorithm-based learning, and others. Monostrategy learning systems can be very effective and useful if learning problems to which they are applied are sufficiently narrowly defined.
Many real-world applications, however, pose learning problems that go beyond the capability of monostrategy learning methods. In view of this, recent years have witnessed a growing interest in developing multistrategy systems, which integrate two or more inference types and/or paradigms within one learning system. Such multistrategy systems take advantage of the complementarity of different inference types or representational mechanisms. Therefore, they have a potential to be more versatile and more powerful than monostrategy systems. On the other hand, due to their greater complexity, their development is significantly more difficult and represents a new great challenge to the machine learning community.
Multistrategy Learning contains contributions characteristic of the current research in this area.

"Sobre este título" puede pertenecer a otra edición de este libro.

Detalles bibliográficos

Título: Multistrategy Learning: A Special Issue of ...
Editorial: Springer
Año de publicación: 1993
Encuadernación: Encuadernación de tapa dura
Condición: New

Los mejores resultados en AbeBooks

Imagen de archivo

Publicado por Springer, 1993
ISBN 10: 0792393740 ISBN 13: 9780792393740
Nuevo Tapa dura

Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: ABLIING23Feb2416190185861

Contactar al vendedor

Comprar nuevo

EUR 200,56
Envío por EUR 3,37
Se envía dentro de Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Publicado por Springer, 1993
ISBN 10: 0792393740 ISBN 13: 9780792393740
Nuevo Tapa dura

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9780792393740_new

Contactar al vendedor

Comprar nuevo

EUR 218,90
Envío por EUR 13,81
Se envía de Reino Unido a Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Ryszard S. Michalski
ISBN 10: 0792393740 ISBN 13: 9780792393740
Nuevo Tapa dura

Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: new. Hardcover. Most machine learning research has been concerned with the development of systems that implement one type of inference within a single representational paradigm. Such systems, which can be called monostrategy learning systems, include those for empirical induction of decision trees or rules, explanation-based generalization, neural net learning from examples, genetic algorithm-based learning, and others. Monostrategy learning systems can be very effective and useful if learning problems to which they are applied are sufficiently narrowly defined. Many real-world applications, however, pose learning problems that go beyond the capability of monostrategy learning methods. In view of this, recent years have witnessed a growing interest in developing multistrategy systems, which integrate two or more inference types and/or paradigms within one learning system. Such multistrategy systems take advantage of the complementarity of different inference types or representational mechanisms. Therefore, they have a potential to be more versatile and more powerful than monostrategy systems.On the other hand, due to their greater complexity, their development is significantly more difficult and represents a new great challenge to the machine learning community. This work contains contributions characteristic of the current research in this area. Monostrategy learning systems can be very effective and useful if learning problems to which they are applied are sufficiently narrowly defined. Many real-world applications, however, pose learning problems that go beyond the capability of monostrategy learning methods. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9780792393740

Contactar al vendedor

Comprar nuevo

EUR 228,23
Gastos de envío gratis
Se envía dentro de Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Michalski, Ryszard S.
Publicado por Springer US, 1993
ISBN 10: 0792393740 ISBN 13: 9780792393740
Nuevo Tapa dura

Librería: moluna, Greven, Alemania

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Gebunden. Condición: New. Most machine learning research has been concerned with the development of systems that implememnt one type of inference within a single representational paradigm. Such systems, which can be called monostrategy learning systems, include those for. Nº de ref. del artículo: 458443563

Contactar al vendedor

Comprar nuevo

EUR 238,59
Envío por EUR 48,99
Se envía de Alemania a Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Ryszard S Michalski
Publicado por Springer Us Jun 1993, 1993
ISBN 10: 0792393740 ISBN 13: 9780792393740
Nuevo Tapa dura

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Neuware - Most machine learning research has been concerned with the development of systems that implememnt one type of inference within a single representational paradigm. Such systems, which can be called monostrategy learning systems, include those for empirical induction of decision trees or rules, explanation-based generalization, neural net learning from examples, genetic algorithm-based learning, and others. Monostrategy learning systems can be very effective and useful if learning problems to which they are applied are sufficiently narrowly defined. Many real-world applications, however, pose learning problems that go beyond the capability of monostrategy learning methods. In view of this, recent years have witnessed a growing interest in developing multistrategy systems, which integrate two or more inference types and/or paradigms within one learning system. Such multistrategy systems take advantage of the complementarity of different inference types or representational mechanisms. Therefore, they have a potential to be more versatile and more powerful than monostrategy systems. On the other hand, due to their greater complexity, their development is significantly more difficult and represents a new great challenge to the machine learning community. Multistrategy Learning contains contributions characteristic of the current research in this area. Nº de ref. del artículo: 9780792393740

Contactar al vendedor

Comprar nuevo

EUR 292,69
Envío por EUR 62,16
Se envía de Alemania a Estados Unidos de America

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Ryszard S. Michalski
ISBN 10: 0792393740 ISBN 13: 9780792393740
Nuevo Tapa dura

Librería: AussieBookSeller, Truganina, VIC, Australia

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: new. Hardcover. Most machine learning research has been concerned with the development of systems that implement one type of inference within a single representational paradigm. Such systems, which can be called monostrategy learning systems, include those for empirical induction of decision trees or rules, explanation-based generalization, neural net learning from examples, genetic algorithm-based learning, and others. Monostrategy learning systems can be very effective and useful if learning problems to which they are applied are sufficiently narrowly defined. Many real-world applications, however, pose learning problems that go beyond the capability of monostrategy learning methods. In view of this, recent years have witnessed a growing interest in developing multistrategy systems, which integrate two or more inference types and/or paradigms within one learning system. Such multistrategy systems take advantage of the complementarity of different inference types or representational mechanisms. Therefore, they have a potential to be more versatile and more powerful than monostrategy systems.On the other hand, due to their greater complexity, their development is significantly more difficult and represents a new great challenge to the machine learning community. This work contains contributions characteristic of the current research in this area. Monostrategy learning systems can be very effective and useful if learning problems to which they are applied are sufficiently narrowly defined. Many real-world applications, however, pose learning problems that go beyond the capability of monostrategy learning methods. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Nº de ref. del artículo: 9780792393740

Contactar al vendedor

Comprar nuevo

EUR 366,36
Envío por EUR 31,29
Se envía de Australia a Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito