Multi-Faceted Deep Learning: Models and Data

Benois-Pineau, Jenny

ISBN 10: 3030744809 ISBN 13: 9783030744809
Editorial: Springer, 2022
Nuevos Encuadernación de tapa blanda

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Vendedor de AbeBooks desde 6 de abril de 2009

Este artículo en concreto ya no está disponible.

Descripción

Descripción:

N° de ref. del artículo 44917605-n

Denunciar este artículo

Sinopsis:

This book covers a large set of methods in the field of Artificial Intelligence - Deep Learning applied to real-world problems. The fundamentals of  the Deep Learning approach and different types of Deep Neural Networks (DNNs) are first summarized in this book, which offers  a comprehensive preamble for further  problem–oriented chapters. 

The most interesting and open problems of machine learning in the framework of  Deep Learning are discussed in this book and solutions are proposed.  This book illustrates how to implement the zero-shot learning with Deep Neural Network Classifiers, which require a large amount of training data. The lack of annotated training data naturally pushes the researchers to implement low supervision algorithms. Metric learning is a long-term research but in the framework of Deep Learning approaches, it gets freshness and originality. Fine-grained classification with a low inter-class variability is a difficult problem for any classification tasks.  This book presents how it is solved, by using different modalities and attention mechanisms in 3D convolutional networks. 

Researchers focused on Machine Learning, Deep learning, Multimedia and Computer Vision will want to buy this book. Advanced level students studying computer science within these topic areas will also find this book useful.

Acerca del autor:

Prof. Jenny Benois-Pineau is a full professor of Computer Science at the University Bordeaux. Her topics of interest include image/multimedia, artificial intelligence in multimedia and healthcare. She is the author and co-author of more than 200 papers in international journals, conference proceedings, books and book chapters. She is associated editor of Eurasip SPIC, ACM MTAP, senior associated editor JEI SPIE journals. She has organized workshops and special sessions at international conferences IEEE ICIP, ACM MM,... She has served in numerous program committees in international conferences: ACM MM, ACM ICMR, ACM CIVR, CBMI, IPTA, ACM MMM. She has been coordinator or leading researcher in EU – funded and French national research projects. She is a member of IEEE TC IVMSP. She has Knight of Academic Palms grade.

Dr. Akka Zemmari has received his Ph.D. degree from the University of Bordeaux 1, France, in 2000. He is an associate professor in computer science since 2001 at University of Bordeaux, France. His research interests include Artificial Intelligence, Deep Learning, Distributed algorithms and systems, Graphs, Randomized Algorithms, and Security. He wrote one book and more than 80 research papers published in international journals and conference proceedings and he is involved in program committees and organization committees of international conferences. 

"Sobre este título" puede pertenecer a otra edición de este libro.

Detalles bibliográficos

Título: Multi-Faceted Deep Learning: Models and Data
Editorial: Springer
Año de publicación: 2022
Encuadernación: Encuadernación de tapa blanda
Condición: New

Los mejores resultados en AbeBooks

Imagen del vendedor

ISBN 10: 3030744809 ISBN 13: 9783030744809
Nuevo Kartoniert / Broschiert

Librería: moluna, Greven, Alemania

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Kartoniert / Broschiert. Condición: New. Nº de ref. del artículo: 723463980

Contactar al vendedor

Comprar nuevo

EUR 162,51
Convertir moneda
Gastos de envío: EUR 48,99
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Publicado por Springer, 2022
ISBN 10: 3030744809 ISBN 13: 9783030744809
Nuevo Tapa blanda

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9783030744809_new

Contactar al vendedor

Comprar nuevo

EUR 171,01
Convertir moneda
Gastos de envío: EUR 13,80
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Publicado por Springer, 2022
ISBN 10: 3030744809 ISBN 13: 9783030744809
Nuevo Tapa blanda

Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: ABLIING23Mar3113020028660

Contactar al vendedor

Comprar nuevo

EUR 185,23
Convertir moneda
Gastos de envío: EUR 3,42
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Jenny Benois-Pineau
ISBN 10: 3030744809 ISBN 13: 9783030744809
Nuevo Paperback

Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: new. Paperback. This book covers a large set of methods in the field of Artificial Intelligence - Deep Learning applied to real-world problems. The fundamentals of the Deep Learning approach and different types of Deep Neural Networks (DNNs) are first summarized in this book, which offers a comprehensive preamble for further problemoriented chapters. The most interesting and open problems of machine learning in the framework of Deep Learning are discussed in this book and solutions are proposed. This book illustrates how to implement the zero-shot learning with Deep Neural Network Classifiers, which require a large amount of training data. The lack of annotated training data naturally pushes the researchers to implement low supervision algorithms. Metric learning is a long-term research but in the framework of Deep Learning approaches, it gets freshness and originality. Fine-grained classification with a low inter-class variability is a difficult problem for any classification tasks. This book presents how it is solved, by using different modalities and attention mechanisms in 3D convolutional networks. Researchers focused on Machine Learning, Deep learning, Multimedia and Computer Vision will want to buy this book. Advanced level students studying computer science within these topic areas will also find this book useful. This book covers a large set of methods in the field of Artificial Intelligence - Deep Learning applied to real-world problems. The most interesting and open problems of machine learning in the framework of Deep Learning are discussed in this book and solutions are proposed. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9783030744809

Contactar al vendedor

Comprar nuevo

EUR 188,61
Convertir moneda
Gastos de envío: GRATIS
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Akka Zemmari
ISBN 10: 3030744809 ISBN 13: 9783030744809
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book covers a large set of methods in the field of Artificial Intelligence - Deep Learning applied to real-world problems.The fundamentals of the Deep Learning approach and different types of Deep Neural Networks (DNNs) are first summarized in this book, which offers a comprehensive preamble for further problem-oriented chapters.The most interesting and open problems of machine learning in the framework of Deep Learning are discussed in this book and solutions are proposed. This book illustrates how to implement the zero-shot learning with Deep Neural Network Classifiers, which require a large amount of training data. The lack of annotated training data naturally pushes the researchers to implement low supervision algorithms. Metric learning is a long-term research but in the framework of Deep Learning approaches, it gets freshness and originality. Fine-grained classification with a low inter-class variability is a difficult problem for any classification tasks. This book presents how it is solved, by using different modalities and attention mechanisms in 3D convolutional networks.Researchers focused on Machine Learning, Deep learning, Multimedia and Computer Vision will want to buy this book. Advanced level students studying computer science within these topic areas will also find this book useful. 328 pp. Englisch. Nº de ref. del artículo: 9783030744809

Contactar al vendedor

Comprar nuevo

EUR 192,59
Convertir moneda
Gastos de envío: EUR 23,00
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Akka Zemmari
ISBN 10: 3030744809 ISBN 13: 9783030744809
Nuevo Taschenbuch

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book covers a large set of methods in the field of Artificial Intelligence - Deep Learning applied to real-world problems.The fundamentals of the Deep Learning approach and different types of Deep Neural Networks (DNNs) are first summarized in this book, which offers a comprehensive preamble for further problem-oriented chapters.The most interesting and open problems of machine learning in the framework of Deep Learning are discussed in this book and solutions are proposed. This book illustrates how to implement the zero-shot learning with Deep Neural Network Classifiers, which require a large amount of training data. The lack of annotated training data naturally pushes the researchers to implement low supervision algorithms. Metric learning is a long-term research but in the framework of Deep Learning approaches, it gets freshness and originality. Fine-grained classification with a low inter-class variability is a difficult problem for any classification tasks. This book presents how it is solved, by using different modalities and attention mechanisms in 3D convolutional networks.Researchers focused on Machine Learning, Deep learning, Multimedia and Computer Vision will want to buy this book. Advanced level students studying computer science within these topic areas will also find this book useful. Nº de ref. del artículo: 9783030744809

Contactar al vendedor

Comprar nuevo

EUR 192,59
Convertir moneda
Gastos de envío: EUR 62,50
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Akka Zemmari
ISBN 10: 3030744809 ISBN 13: 9783030744809
Nuevo Taschenbuch

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Neuware -This book covers a large set of methods in the field of Artificial Intelligence - Deep Learning applied to real-world problems. The fundamentals of the Deep Learning approach and different types of Deep Neural Networks (DNNs) are first summarized in this book, which offers a comprehensive preamble for further problem¿oriented chapters.The most interesting and open problems of machine learning in the framework of Deep Learning are discussed in this book and solutions are proposed. This book illustrates how to implement the zero-shot learning with Deep Neural Network Classifiers, which require a large amount of training data. The lack of annotated training data naturally pushes the researchers to implement low supervision algorithms. Metric learning is a long-term research but in the framework of Deep Learning approaches, it gets freshness and originality. Fine-grained classification with a low inter-class variability is a difficult problem for any classification tasks. This book presents how it is solved, by using different modalities and attention mechanisms in 3D convolutional networks.Researchers focused on Machine Learning, Deep learning, Multimedia and Computer Vision will want to buy this book. Advanced level students studying computer science within these topic areas will also find this book useful.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 328 pp. Englisch. Nº de ref. del artículo: 9783030744809

Contactar al vendedor

Comprar nuevo

EUR 192,59
Convertir moneda
Gastos de envío: EUR 60,00
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Publicado por Springer, 2022
ISBN 10: 3030744809 ISBN 13: 9783030744809
Nuevo Tapa blanda

Librería: California Books, Miami, FL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: I-9783030744809

Contactar al vendedor

Comprar nuevo

EUR 228,07
Convertir moneda
Gastos de envío: GRATIS
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Publicado por Springer, 2022
ISBN 10: 3030744809 ISBN 13: 9783030744809
Nuevo Tapa blanda

Librería: Books Puddle, New York, NY, Estados Unidos de America

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. 1st ed. 2021 edition NO-PA16APR2015-KAP. Nº de ref. del artículo: 26396288730

Contactar al vendedor

Comprar nuevo

EUR 243,65
Convertir moneda
Gastos de envío: EUR 3,42
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen de archivo

Publicado por Springer, 2022
ISBN 10: 3030744809 ISBN 13: 9783030744809
Nuevo Tapa blanda
Impresión bajo demanda

Librería: Majestic Books, Hounslow, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Print on Demand. Nº de ref. del artículo: 401169669

Contactar al vendedor

Comprar nuevo

EUR 259,97
Convertir moneda
Gastos de envío: EUR 7,49
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Existen otras 5 copia(s) de este libro

Ver todos los resultados de su búsqueda