Model Optimization Methods for Efficient and Edge AI: Federated Learning Architectures, Frameworks and Applications

ISBN 10: 1394219210 ISBN 13: 9781394219216
Editorial: Wiley-IEEE Press, 2024
Nuevos Encuadernación de tapa dura

Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Vendedor de AbeBooks desde 9 de octubre de 2009

Este artículo en concreto ya no está disponible.

Descripción

Descripción:

2024. 1st Edition. hardcover. . . . . . Books ship from the US and Ireland. N° de ref. del artículo V9781394219216

Denunciar este artículo

Sinopsis:

Comprehensive overview of the fledgling domain of federated learning (FL), explaining emerging FL methods, architectural approaches, enabling frameworks, and applications

Model Optimization Methods for Efficient and Edge AI explores AI model engineering, evaluation, refinement, optimization, and deployment across multiple cloud environments (public, private, edge, and hybrid). It presents key applications of the AI paradigm, including computer vision (CV) and Natural Language Processing (NLP), explaining the nitty-gritty of federated learning (FL) and how the FL method is helping to fulfill AI model optimization needs. The book also describes tools that vendors have created, including FL frameworks and platforms such as PySyft, Tensor Flow Federated (TFF), FATE (Federated AI Technology Enabler), Tensor/IO, and more.

The first part of the text covers popular AI and ML methods, platforms, and applications, describing leading AI frameworks and libraries in order to clearly articulate how these tools can help with visualizing and implementing highly flexible AI models quickly. The second part focuses on federated learning, discussing its basic concepts, applications, platforms, and its potential in edge systems (such as IoT).

Other topics covered include:

  • Building AI models that are destined to solve several problems, with a focus on widely articulated classification, regression, association, clustering, and other prediction problems
  • Generating actionable insights through a variety of AI algorithms, platforms, parallel processing, and other enablers
  • Compressing AI models so that computational, memory, storage, and network requirements can be substantially reduced
  • Addressing crucial issues such as data confidentiality, data access rights, data protection, and access to heterogeneous data
  • Overcoming cyberattacks on mission-critical software systems by leveraging federated learning

Written in an accessible manner and containing a helpful mix of both theoretical concepts and practical applications, Model Optimization Methods for Efficient and Edge AI is an essential reference on the subject for graduate and postgraduate students, researchers, IT professionals, and business leaders.

Acerca del autor:

Pethuru Raj Chelliah, PhD, is the Chief Architect of the Edge AI division of Reliance Jio Platforms Ltd. (JPL), Bangalore, India.

Amir Masoud Rahmani, PhD, is an artificial intelligence faculty member at the National Yunlin University of Science and Technology, Taiwan.

Robert Colby is a Principal Engineer in IT Infrastructure responsible for Manufacturing Network Architecture and IoT Infrastructure at Intel Corporation.

Gayathri Nagasubramanian, PhD, is an Assistant Professor with the Department of Computer Science and Engineering at GITAM University in Bengaluru, India.

Sunku Ranganath is a Principal Product Manager for Edge Infrastructure Services at Equinix.

"Sobre este título" puede pertenecer a otra edición de este libro.

Detalles bibliográficos

Título: Model Optimization Methods for Efficient and...
Editorial: Wiley-IEEE Press
Año de publicación: 2024
Encuadernación: Encuadernación de tapa dura
Condición: New

Los mejores resultados en AbeBooks

Imagen del vendedor

Chelliah, Pethuru Raj; Rahmani, Amir Masoud; Colby, Robert; Nagasubramanian, Gayathri; Ranganath, Sunku
Publicado por Wiley-IEEE Press, 2024
ISBN 10: 1394219210 ISBN 13: 9781394219216
Nuevo Tapa dura

Librería: GreatBookPricesUK, Woodford Green, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 45832993-n

Contactar al vendedor

Comprar nuevo

EUR 128,19
EUR 17,14 shipping
Se envía de Reino Unido a Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

PR Chelliah
Publicado por Wiley, 2024
ISBN 10: 1394219210 ISBN 13: 9781394219216
Nuevo Tapa dura

Librería: PBShop.store UK, Fairford, GLOS, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

HRD. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: FW-9781394219216

Contactar al vendedor

Comprar nuevo

EUR 128,20
EUR 5,74 shipping
Se envía de Reino Unido a Estados Unidos de America

Cantidad disponible: 15 disponibles

Añadir al carrito

Imagen del vendedor

Chelliah, Pethuru Raj; Rahmani, Amir Masoud; Colby, Robert; Nagasubramanian, Gayathri; Ranganath, Sunku
Publicado por Wiley-IEEE Press, 2024
ISBN 10: 1394219210 ISBN 13: 9781394219216
Nuevo Tapa dura

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 45832993-n

Contactar al vendedor

Comprar nuevo

EUR 133,72
EUR 2,25 shipping
Se envía dentro de Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Pethuru Raj Chelliah
Publicado por John Wiley & Sons Inc, 2024
ISBN 10: 1394219210 ISBN 13: 9781394219216
Nuevo Tapa dura
Impresión bajo demanda

Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: new. Hardcover. Comprehensive overview of the fledgling domain of federated learning (FL), explaining emerging FL methods, architectural approaches, enabling frameworks, and applications Model Optimization Methods for Efficient and Edge AI explores AI model engineering, evaluation, refinement, optimization, and deployment across multiple cloud environments (public, private, edge, and hybrid). It presents key applications of the AI paradigm, including computer vision (CV) and Natural Language Processing (NLP), explaining the nitty-gritty of federated learning (FL) and how the FL method is helping to fulfill AI model optimization needs. The book also describes tools that vendors have created, including FL frameworks and platforms such as PySyft, Tensor Flow Federated (TFF), FATE (Federated AI Technology Enabler), Tensor/IO, and more. The first part of the text covers popular AI and ML methods, platforms, and applications, describing leading AI frameworks and libraries in order to clearly articulate how these tools can help with visualizing and implementing highly flexible AI models quickly. The second part focuses on federated learning, discussing its basic concepts, applications, platforms, and its potential in edge systems (such as IoT). Other topics covered include: Building AI models that are destined to solve several problems, with a focus on widely articulated classification, regression, association, clustering, and other prediction problemsGenerating actionable insights through a variety of AI algorithms, platforms, parallel processing, and other enablersCompressing AI models so that computational, memory, storage, and network requirements can be substantially reducedAddressing crucial issues such as data confidentiality, data access rights, data protection, and access to heterogeneous dataOvercoming cyberattacks on mission-critical software systems by leveraging federated learning Written in an accessible manner and containing a helpful mix of both theoretical concepts and practical applications, Model Optimization Methods for Efficient and Edge AI is an essential reference on the subject for graduate and postgraduate students, researchers, IT professionals, and business leaders. This item is printed on demand. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9781394219216

Contactar al vendedor

Comprar nuevo

EUR 136,05
Gastos de envío gratis
Se envía dentro de Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Chelliah
Publicado por Wiley-IEEE Press, 2025
ISBN 10: 1394219210 ISBN 13: 9781394219216
Nuevo Tapa blanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 865159830

Contactar al vendedor

Comprar nuevo

EUR 141,64
EUR 48,99 shipping
Se envía de Alemania a Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Chelliah, Pethuru Raj; Rahmani, Amir Masoud; Colby, Robert; Nagasubramanian, Gayathri; Ranganath, Sunku
Publicado por Wiley-IEEE Press, 2024
ISBN 10: 1394219210 ISBN 13: 9781394219216
Antiguo o usado Tapa dura

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 45832993

Contactar al vendedor

Comprar usado

EUR 145,20
EUR 2,25 shipping
Se envía dentro de Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Pethuru Raj Chelliah
Publicado por John Wiley & Sons Inc, 2024
ISBN 10: 1394219210 ISBN 13: 9781394219216
Nuevo Tapa dura

Librería: CitiRetail, Stevenage, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: new. Hardcover. Comprehensive overview of the fledgling domain of federated learning (FL), explaining emerging FL methods, architectural approaches, enabling frameworks, and applications Model Optimization Methods for Efficient and Edge AI explores AI model engineering, evaluation, refinement, optimization, and deployment across multiple cloud environments (public, private, edge, and hybrid). It presents key applications of the AI paradigm, including computer vision (CV) and Natural Language Processing (NLP), explaining the nitty-gritty of federated learning (FL) and how the FL method is helping to fulfill AI model optimization needs. The book also describes tools that vendors have created, including FL frameworks and platforms such as PySyft, Tensor Flow Federated (TFF), FATE (Federated AI Technology Enabler), Tensor/IO, and more. The first part of the text covers popular AI and ML methods, platforms, and applications, describing leading AI frameworks and libraries in order to clearly articulate how these tools can help with visualizing and implementing highly flexible AI models quickly. The second part focuses on federated learning, discussing its basic concepts, applications, platforms, and its potential in edge systems (such as IoT). Other topics covered include: Building AI models that are destined to solve several problems, with a focus on widely articulated classification, regression, association, clustering, and other prediction problemsGenerating actionable insights through a variety of AI algorithms, platforms, parallel processing, and other enablersCompressing AI models so that computational, memory, storage, and network requirements can be substantially reducedAddressing crucial issues such as data confidentiality, data access rights, data protection, and access to heterogeneous dataOvercoming cyberattacks on mission-critical software systems by leveraging federated learning Written in an accessible manner and containing a helpful mix of both theoretical concepts and practical applications, Model Optimization Methods for Efficient and Edge AI is an essential reference on the subject for graduate and postgraduate students, researchers, IT professionals, and business leaders. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Nº de ref. del artículo: 9781394219216

Contactar al vendedor

Comprar nuevo

EUR 145,90
EUR 42,27 shipping
Se envía de Reino Unido a Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Chelliah, Pethuru Raj; Rahmani, Amir Masoud; Colby, Robert; Nagasubramanian, Gayathri; Ranganath, Sunku
Publicado por Wiley-IEEE Press, 2024
ISBN 10: 1394219210 ISBN 13: 9781394219216
Antiguo o usado Tapa dura

Librería: GreatBookPricesUK, Woodford Green, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 45832993

Contactar al vendedor

Comprar usado

EUR 150,95
EUR 17,14 shipping
Se envía de Reino Unido a Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Pethuru Raj Chelliah
Publicado por Wiley-IEEE Press, 2024
ISBN 10: 1394219210 ISBN 13: 9781394219216
Nuevo Tapa dura

Librería: THE SAINT BOOKSTORE, Southport, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardback. Condición: New. New copy - Usually dispatched within 4 working days. 1093. Nº de ref. del artículo: B9781394219216

Contactar al vendedor

Comprar nuevo

EUR 152,98
EUR 24,77 shipping
Se envía de Reino Unido a Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Pethuru Raj Chelliah
Publicado por Wiley Nov 2024, 2024
ISBN 10: 1394219210 ISBN 13: 9781394219216
Nuevo Tapa dura

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Neuware - Comprehensive overview of the fledgling domain of federated learning (FL), explaining emerging FL methods, architectural approaches, enabling frameworks, and applications. Nº de ref. del artículo: 9781394219216

Contactar al vendedor

Comprar nuevo

EUR 176,76
EUR 64,77 shipping
Se envía de Alemania a Estados Unidos de America

Cantidad disponible: 2 disponibles

Añadir al carrito

Existen otras 4 copia(s) de este libro

Ver todos los resultados de su búsqueda