Model-Free Prediction and Regression: A Transformation-Based Approach to Inference (Frontiers in Probability and the Statistical Sciences)

Politis, Dimitris N.

ISBN 10: 3319213466 ISBN 13: 9783319213460
Editorial: Springer, 2015
Nuevos Encuadernación de tapa dura

Librería: Ria Christie Collections, Uxbridge, Reino Unido Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Vendedor de AbeBooks desde 25 de marzo de 2015

Este artículo en concreto ya no está disponible.

Descripción

Descripción:

In. N° de ref. del artículo ria9783319213460_new

Denunciar este artículo

Sinopsis:

The Model-Free Prediction Principle expounded upon in this monograph is based on the simple notion of transforming a complex dataset to one that is easier to work with, e.g., i.i.d. or Gaussian. As such, it restores the emphasis on observable quantities, i.e., current and future data, as opposed to unobservable model parameters and estimates thereof, and yields optimal predictors in diverse settings such as regression and time series. Furthermore, the Model-Free Bootstrap takes us beyond point prediction in order to construct frequentist prediction intervals without resort to unrealistic assumptions such as normality.

Prediction has been traditionally approached via a model-based paradigm, i.e., (a) fit a model to the data at hand, and (b) use the fitted model to extrapolate/predict future data. Due to both mathematical and computational constraints, 20th century statistical practice focused mostly on parametric models. Fortunately, with the advent of widely accessible powerful computing in the late 1970s, computer-intensive methods such as the bootstrap and cross-validation freed practitioners from the limitations of parametric models, and paved the way towards the `big data’ era of the 21st century. Nonetheless, there is a further step one may take, i.e., going beyond even nonparametric models; this is where the Model-Free Prediction Principle is useful.

Interestingly, being able to predict a response variable Y associated with a regressor variable X taking on any possible value seems to inadvertently also achieve the main goal of modeling, i.e., trying to describe how Y depends on X. Hence, as prediction can be treated as a by-product of model-fitting, key estimation problems can be addressed as a by-product of being able to perform prediction. In other words, a practitioner can use Model-Free Prediction ideas in order to additionally obtain point estimates and confidence intervals for relevant parameters leading to an alternative, transformation-based approach to statistical inference.

Acerca del autor:

Dimitris N. Politis is Professor of Mathematics and Adjunct Professor of Economics at the University of California, San Diego. His research interests include Time Series Analysis, Resampling and Subsampling, Nonparametric Function Estimation, and Model-free Prediction. He has served as Editor of the IMS Bulletin (2010-2013), Co-Editor of the Journal of Time Series Analysis (2013-present), Co-Editor of the Journal of Nonparametric Statistics (2008-2011), and as Associate Editor for several journals including Bernoulli, the Journal of the American Statistical Association, and the Journal of the Royal Statistical Society, Series B. He is a fellow of the Institute of Mathematical Statistics (IMS) and the American Statistical Association, former fellow of the John Simon Guggenheim Memorial Foundation, and co-founder (with M. Akritas and S.N. Lahiri) of the International Society for NonParametric Statistics.

"Sobre este título" puede pertenecer a otra edición de este libro.

Detalles bibliográficos

Título: Model-Free Prediction and Regression: A ...
Editorial: Springer
Año de publicación: 2015
Encuadernación: Encuadernación de tapa dura
Condición: New

Los mejores resultados en AbeBooks

Imagen de archivo

Politis, Dimitris N.
Publicado por Palgrave Macmillan, 2015
ISBN 10: 3319213466 ISBN 13: 9783319213460
Antiguo o usado Tapa dura

Librería: Buchpark, Trebbin, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: Sehr gut. Zustand: Sehr gut | Seiten: 264 | Sprache: Englisch | Produktart: Bücher | Keine Beschreibung verfügbar. Nº de ref. del artículo: 25713010/12

Contactar al vendedor

Comprar usado

EUR 64,42
EUR 105,00 shipping
Se envía de Alemania a Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Dimitris N. Politis
Publicado por Springer International Publishing, 2015
ISBN 10: 3319213466 ISBN 13: 9783319213460
Nuevo Tapa dura
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Develops the model-free prediction principleGoes beyond fitting models toward direct predictionTreats applications in regression and autoregression in detail Dimitris N. Politis is Professor of Mathematics and Adjunct Pr. Nº de ref. del artículo: 31552269

Contactar al vendedor

Comprar nuevo

EUR 92,27
EUR 48,99 shipping
Se envía de Alemania a Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Dimitris N. Politis
Publicado por Springer, 2015
ISBN 10: 3319213466 ISBN 13: 9783319213460
Nuevo Tapa dura
Impresión bajo demanda

Librería: preigu, Osnabrück, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Model-Free Prediction and Regression | A Transformation-Based Approach to Inference | Dimitris N. Politis | Buch | xvii | Englisch | 2015 | Springer | EAN 9783319213460 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand. Nº de ref. del artículo: 104627582

Contactar al vendedor

Comprar nuevo

EUR 95,80
EUR 70,00 shipping
Se envía de Alemania a Estados Unidos de America

Cantidad disponible: 5 disponibles

Añadir al carrito

Imagen de archivo

Politis, Dimitris N.
Publicado por Springer, 2015
ISBN 10: 3319213466 ISBN 13: 9783319213460
Nuevo Tapa dura

Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: ABLIING23Mar3113020090938

Contactar al vendedor

Comprar nuevo

EUR 102,49
EUR 3,41 shipping
Se envía dentro de Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Dimitris N. Politis
Publicado por Springer, 2015
ISBN 10: 3319213466 ISBN 13: 9783319213460
Antiguo o usado Tapa dura

Librería: PBShop.store UK, Fairford, GLOS, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

HRD. Condición: Used - Very Good. Used - Like New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: P1-9783319213460

Contactar al vendedor

Comprar usado

EUR 102,77
EUR 5,74 shipping
Se envía de Reino Unido a Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Politis, Dimitris N.
Publicado por Springer, 2015
ISBN 10: 3319213466 ISBN 13: 9783319213460
Nuevo Tapa dura

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 23944988-n

Contactar al vendedor

Comprar nuevo

EUR 103,67
EUR 2,26 shipping
Se envía dentro de Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Dimitris N. Politis
Publicado por Springer, 2015
ISBN 10: 3319213466 ISBN 13: 9783319213460
Antiguo o usado Tapa dura

Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

HRD. Condición: Used - Very Good. Used - Like New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: P1-9783319213460

Contactar al vendedor

Comprar usado

EUR 104,22
Gastos de envío gratis
Se envía dentro de Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Dimitris N. Politis
ISBN 10: 3319213466 ISBN 13: 9783319213460
Nuevo Tapa dura

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - The Model-Free Prediction Principle expounded upon in this monograph is based on the simple notion of transforming a complex dataset to one that is easier to work with, e.g., i.i.d. or Gaussian. As such, it restores the emphasis on observable quantities, i.e., current and future data, as opposed to unobservable model parameters and estimates thereof, and yields optimal predictors in diverse settings such as regression and time series. Furthermore, the Model-Free Bootstrap takes us beyond point prediction in order to construct frequentist prediction intervals without resort to unrealistic assumptions such as normality.Prediction has been traditionally approached via a model-based paradigm, i.e., (a) fit a model to the data at hand, and (b) use the fitted model to extrapolate/predict future data. Due to both mathematical and computational constraints, 20th century statistical practice focused mostly on parametric models. Fortunately, with the advent of widely accessible powerful computing in the late 1970s, computer-intensive methods such as the bootstrap and cross-validation freed practitioners from the limitations of parametric models, and paved the way towards the `big data' era of the 21st century. Nonetheless, there is a further step one may take, i.e., going beyond even nonparametric models; this is where the Model-Free Prediction Principle is useful.Interestingly, being able to predict a response variable Y associated with a regressor variable X taking on any possible value seems to inadvertently also achieve the main goal of modeling, i.e., trying to describe how Y depends on X. Hence, as prediction can be treated as a by-product of model-fitting, key estimation problems can be addressed as a by-product of being able to perform prediction. In other words, a practitioner can use Model-Free Prediction ideas in order to additionally obtain point estimates and confidence intervals for relevant parameters leading to an alternative, transformation-based approach to statistical inference. Nº de ref. del artículo: 9783319213460

Contactar al vendedor

Comprar nuevo

EUR 106,99
EUR 62,83 shipping
Se envía de Alemania a Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Dimitris N. Politis
ISBN 10: 3319213466 ISBN 13: 9783319213460
Nuevo Tapa dura
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The Model-Free Prediction Principle expounded upon in this monograph is based on the simple notion of transforming a complex dataset to one that is easier to work with, e.g., i.i.d. or Gaussian. As such, it restores the emphasis on observable quantities, i.e., current and future data, as opposed to unobservable model parameters and estimates thereof, and yields optimal predictors in diverse settings such as regression and time series. Furthermore, the Model-Free Bootstrap takes us beyond point prediction in order to construct frequentist prediction intervals without resort to unrealistic assumptions such as normality.Prediction has been traditionally approached via a model-based paradigm, i.e., (a) fit a model to the data at hand, and (b) use the fitted model to extrapolate/predict future data. Due to both mathematical and computational constraints, 20th century statistical practice focused mostly on parametric models. Fortunately, with the advent of widely accessible powerful computing in the late 1970s, computer-intensive methods such as the bootstrap and cross-validation freed practitioners from the limitations of parametric models, and paved the way towards the `big data' era of the 21st century. Nonetheless, there is a further step one may take, i.e., going beyond even nonparametric models; this is where the Model-Free Prediction Principle is useful.Interestingly, being able to predict a response variable Y associated with a regressor variable X taking on any possible value seems to inadvertently also achieve the main goal of modeling, i.e., trying to describe how Y depends on X. Hence, as prediction can be treated as a by-product of model-fitting, key estimation problems can be addressed as a by-product of being able to perform prediction. In other words, a practitioner can use Model-Free Prediction ideas in order to additionally obtain point estimates and confidence intervals for relevant parameters leading to an alternative, transformation-based approach to statistical inference. 264 pp. Englisch. Nº de ref. del artículo: 9783319213460

Contactar al vendedor

Comprar nuevo

EUR 106,99
EUR 23,00 shipping
Se envía de Alemania a Estados Unidos de America

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Dimitris N. Politis
ISBN 10: 3319213466 ISBN 13: 9783319213460
Nuevo Tapa dura

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Neuware -The Model-Free Prediction Principle expounded upon in this monograph is based on the simple notion of transforming a complex dataset to one that is easier to work with, e.g., i.i.d. or Gaussian. As such, it restores the emphasis on observable quantities, i.e., current and future data, as opposed to unobservable model parameters and estimates thereof, and yields optimal predictors in diverse settings such as regression and time series. Furthermore, the Model-Free Bootstrap takes us beyond point prediction in order to construct frequentist prediction intervals without resort to unrealistic assumptions such as normality.Prediction has been traditionally approached via a model-based paradigm, i.e., (a) fit a model to the data at hand, and (b) use the fitted model to extrapolate/predict future data. Due to both mathematical and computational constraints, 20th century statistical practice focused mostly on parametric models. Fortunately, with the advent of widely accessible powerful computing in the late 1970s, computer-intensive methods such as the bootstrap and cross-validation freed practitioners from the limitations of parametric models, and paved the way towards the `big data' era of the 21st century. Nonetheless, there is a further step one may take, i.e., going beyond even nonparametric models; this is where the Model-Free Prediction Principle is useful.Interestingly, being able to predict a response variable Y associated with a regressor variable X taking on any possible value seems to inadvertently also achieve the main goal of modeling, i.e., trying to describe how Y depends on X. Hence, as prediction can be treated as a by-product of model-fitting, key estimation problems can be addressed as a by-product of being able to perform prediction. In other words, a practitioner can use Model-Free Prediction ideas in order to additionally obtain point estimates and confidence intervals for relevant parameters leading to an alternative, transformation-based approach to statistical inference.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 264 pp. Englisch. Nº de ref. del artículo: 9783319213460

Contactar al vendedor

Comprar nuevo

EUR 106,99
EUR 60,00 shipping
Se envía de Alemania a Estados Unidos de America

Cantidad disponible: 2 disponibles

Añadir al carrito

Existen otras 8 copia(s) de este libro

Ver todos los resultados de su búsqueda