Metaheuristics for Machine Learning : Algorithms and Applications

Kalita, Kanak (EDT); Ganesh, Narayanan (EDT); Balamurugan, S. (EDT)

ISBN 10: 1394233922 ISBN 13: 9781394233922
Editorial: Wiley-Scrivener, 2024
Usado Encuadernación de tapa dura

Librería: GreatBookPricesUK, Woodford Green, Reino Unido Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Vendedor de AbeBooks desde 28 de enero de 2020

Este artículo en concreto ya no está disponible.

Descripción

Descripción:

Unread book in perfect condition. N° de ref. del artículo 46162963

Denunciar este artículo

Sinopsis:

METAHEURISTICS for MACHINE LEARNING

The book unlocks the power of nature-inspired optimization in machine learning and presents a comprehensive guide to cutting-edge algorithms, interdisciplinary insights, and real-world applications.

The field of metaheuristic optimization algorithms is experiencing rapid growth, both in academic research and industrial applications. These nature-inspired algorithms, which draw on phenomena like evolution, swarm behavior, and neural systems, have shown remarkable efficiency in solving complex optimization problems. With advancements in machine learning and artificial intelligence, the application of metaheuristic optimization techniques has expanded, demonstrating significant potential in optimizing machine learning models, hyperparameter tuning, and feature selection, among other use-cases.

In the industrial landscape, these techniques are becoming indispensable for solving real-world problems in sectors ranging from healthcare to cybersecurity and sustainability. Businesses are incorporating metaheuristic optimization into machine learning workflows to improve decision-making, automate processes, and enhance system performance. As the boundaries of what is computationally possible continue to expand, the integration of metaheuristic optimization and machine learning represents a pioneering frontier in computational intelligence, making this book a timely resource for anyone involved in this interdisciplinary field.

Metaheuristics for Machine Learning: Algorithms and Applications serves as a comprehensive guide to the intersection of nature-inspired optimization and machine learning. Authored by leading experts, this book seamlessly integrates insights from computer science, biology, and mathematics to offer a panoramic view of the latest advancements in metaheuristic algorithms. You’ll find detailed yet accessible discussions of algorithmic theory alongside real-world case studies that demonstrate their practical applications in machine learning optimization. Perfect for researchers, practitioners, and students, this book provides cutting-edge content with a focus on applicability and interdisciplinary knowledge. Whether you aim to optimize complex systems, delve into neural networks, or enhance predictive modeling, this book arms you with the tools and understanding you need to tackle challenges efficiently. Equip yourself with this essential resource and navigate the ever-evolving landscape of machine learning and optimization with confidence.

Audience

The book is aimed at a broad audience encompassing researchers, practitioners, and students in the fields of computer science, data science, engineering, and mathematics. The detailed but accessible content makes it a must-have for both academia and industry professionals interested in the optimization aspects of machine learning algorithms.

Acerca del autor:

Kanak Kalita, PhD, is a professor in the Department of Mechanical Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, India. He has more than 190 articles in international and national journals and 5 edited books. Dr. Kalita’s research interests include machine learning, fuzzy decision-making, metamodeling, process optimization, finite element method, and composites.

Narayanan Ganesh, PhD, is an associate professor at the Vellore Institute of Technology Chennai Campus. His extensive research encompasses a range of critical areas, including software engineering, agile software development, prediction and optimization techniques, deep learning, image processing, and data analytics. He has published over 30 articles and written 8 textbooks and has been recognized for his contributions to the field with two international patents from Australia.

S. Balamurugan, PhD, is the Director of Research and Development, Intelligent Research Consultancy Services (iRCS), Coimbatore, Tamilnadu, India. He is also Director of the Albert Einstein Engineering and Research Labs (AEER Labs), as well as Vice-Chairman, Renewable Energy Society of India (RESI), India. He has published 45 books, 200+ international journals/ conferences, and 35 patents.

"Sobre este título" puede pertenecer a otra edición de este libro.

Detalles bibliográficos

Título: Metaheuristics for Machine Learning : ...
Editorial: Wiley-Scrivener
Año de publicación: 2024
Encuadernación: Encuadernación de tapa dura
Condición: As New

Los mejores resultados en AbeBooks

Imagen de archivo

Kalita, Kanak
Publicado por Wiley-Scrivener, 2024
ISBN 10: 1394233922 ISBN 13: 9781394233922
Nuevo Tapa dura

Librería: Brook Bookstore On Demand, Napoli, NA, Italia

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: new. Nº de ref. del artículo: 16D8XUARCT

Contactar al vendedor

Comprar nuevo

EUR 162,09
Gastos de envío: EUR 6,80
De Italia a Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Publicado por Wiley-Scrivener, 2024
ISBN 10: 1394233922 ISBN 13: 9781394233922
Antiguo o usado Tapa dura

Librería: World of Books (was SecondSale), Montgomery, IL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: Good. Item in good condition. Textbooks may not include supplemental items i.e. CDs, access codes etc. Nº de ref. del artículo: 00094366099

Contactar al vendedor

Comprar usado

EUR 178,17
Gastos de envío: GRATIS
A Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Kanak Kalita
Publicado por John Wiley & Sons Inc, New York, 2024
ISBN 10: 1394233922 ISBN 13: 9781394233922
Nuevo Tapa dura

Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: new. Hardcover. METAHEURISTICS for MACHINE LEARNING The book unlocks the power of nature-inspired optimization in machine learning and presents a comprehensive guide to cutting-edge algorithms, interdisciplinary insights, and real-world applications. The field of metaheuristic optimization algorithms is experiencing rapid growth, both in academic research and industrial applications. These nature-inspired algorithms, which draw on phenomena like evolution, swarm behavior, and neural systems, have shown remarkable efficiency in solving complex optimization problems. With advancements in machine learning and artificial intelligence, the application of metaheuristic optimization techniques has expanded, demonstrating significant potential in optimizing machine learning models, hyperparameter tuning, and feature selection, among other use-cases. In the industrial landscape, these techniques are becoming indispensable for solving real-world problems in sectors ranging from healthcare to cybersecurity and sustainability. Businesses are incorporating metaheuristic optimization into machine learning workflows to improve decision-making, automate processes, and enhance system performance. As the boundaries of what is computationally possible continue to expand, the integration of metaheuristic optimization and machine learning represents a pioneering frontier in computational intelligence, making this book a timely resource for anyone involved in this interdisciplinary field. Metaheuristics for Machine Learning: Algorithms and Applications serves as a comprehensive guide to the intersection of nature-inspired optimization and machine learning. Authored by leading experts, this book seamlessly integrates insights from computer science, biology, and mathematics to offer a panoramic view of the latest advancements in metaheuristic algorithms. Youll find detailed yet accessible discussions of algorithmic theory alongside real-world case studies that demonstrate their practical applications in machine learning optimization. Perfect for researchers, practitioners, and students, this book provides cutting-edge content with a focus on applicability and interdisciplinary knowledge. Whether you aim to optimize complex systems, delve into neural networks, or enhance predictive modeling, this book arms you with the tools and understanding you need to tackle challenges efficiently. Equip yourself with this essential resource and navigate the ever-evolving landscape of machine learning and optimization with confidence. Audience The book is aimed at a broad audience encompassing researchers, practitioners, and students in the fields of computer science, data science, engineering, and mathematics. The detailed but accessible content makes it a must-have for both academia and industry professionals interested in the optimization aspects of machine learning algorithms. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9781394233922

Contactar al vendedor

Comprar nuevo

EUR 178,25
Gastos de envío: GRATIS
A Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Kanak Kalita
Publicado por John Wiley & Sons Inc, New York, 2024
ISBN 10: 1394233922 ISBN 13: 9781394233922
Nuevo Tapa dura

Librería: CitiRetail, Stevenage, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: new. Hardcover. METAHEURISTICS for MACHINE LEARNING The book unlocks the power of nature-inspired optimization in machine learning and presents a comprehensive guide to cutting-edge algorithms, interdisciplinary insights, and real-world applications. The field of metaheuristic optimization algorithms is experiencing rapid growth, both in academic research and industrial applications. These nature-inspired algorithms, which draw on phenomena like evolution, swarm behavior, and neural systems, have shown remarkable efficiency in solving complex optimization problems. With advancements in machine learning and artificial intelligence, the application of metaheuristic optimization techniques has expanded, demonstrating significant potential in optimizing machine learning models, hyperparameter tuning, and feature selection, among other use-cases. In the industrial landscape, these techniques are becoming indispensable for solving real-world problems in sectors ranging from healthcare to cybersecurity and sustainability. Businesses are incorporating metaheuristic optimization into machine learning workflows to improve decision-making, automate processes, and enhance system performance. As the boundaries of what is computationally possible continue to expand, the integration of metaheuristic optimization and machine learning represents a pioneering frontier in computational intelligence, making this book a timely resource for anyone involved in this interdisciplinary field. Metaheuristics for Machine Learning: Algorithms and Applications serves as a comprehensive guide to the intersection of nature-inspired optimization and machine learning. Authored by leading experts, this book seamlessly integrates insights from computer science, biology, and mathematics to offer a panoramic view of the latest advancements in metaheuristic algorithms. Youll find detailed yet accessible discussions of algorithmic theory alongside real-world case studies that demonstrate their practical applications in machine learning optimization. Perfect for researchers, practitioners, and students, this book provides cutting-edge content with a focus on applicability and interdisciplinary knowledge. Whether you aim to optimize complex systems, delve into neural networks, or enhance predictive modeling, this book arms you with the tools and understanding you need to tackle challenges efficiently. Equip yourself with this essential resource and navigate the ever-evolving landscape of machine learning and optimization with confidence. Audience The book is aimed at a broad audience encompassing researchers, practitioners, and students in the fields of computer science, data science, engineering, and mathematics. The detailed but accessible content makes it a must-have for both academia and industry professionals interested in the optimization aspects of machine learning algorithms. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Nº de ref. del artículo: 9781394233922

Contactar al vendedor

Comprar nuevo

EUR 181,05
Gastos de envío: EUR 42,10
De Reino Unido a Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Publicado por Wiley, 2024
ISBN 10: 1394233922 ISBN 13: 9781394233922
Nuevo Tapa dura Original o primera edición

Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. 2024. 1st Edition. hardcover. . . . . . Nº de ref. del artículo: V9781394233922

Contactar al vendedor

Comprar nuevo

EUR 217,03
Gastos de envío: EUR 10,50
De Irlanda a Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Publicado por Wiley-Scrivener, 2024
ISBN 10: 1394233922 ISBN 13: 9781394233922
Nuevo Tapa dura

Librería: Majestic Books, Hounslow, Reino Unido

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 397472787

Contactar al vendedor

Comprar nuevo

EUR 217,39
Gastos de envío: EUR 7,40
De Reino Unido a Estados Unidos de America

Cantidad disponible: 3 disponibles

Añadir al carrito

Imagen de archivo

Publicado por Wiley-Scrivener, 2024
ISBN 10: 1394233922 ISBN 13: 9781394233922
Nuevo Tapa dura

Librería: Books Puddle, New York, NY, Estados Unidos de America

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. 1st edition NO-PA16APR2015-KAP. Nº de ref. del artículo: 26398937036

Contactar al vendedor

Comprar nuevo

EUR 226,88
Gastos de envío: EUR 3,45
A Estados Unidos de America

Cantidad disponible: 3 disponibles

Añadir al carrito

Imagen de archivo

Kalita, Kanak (Edited by)/ Ganesh, Narayanan (Edited by)/ Balamurugan, S. (Edited by)
Publicado por John Wiley & Sons, 2024
ISBN 10: 1394233922 ISBN 13: 9781394233922
Nuevo Tapa dura

Librería: Revaluation Books, Exeter, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: Brand New. 400 pages. 9.50x6.50x1.00 inches. In Stock. Nº de ref. del artículo: __1394233922

Contactar al vendedor

Comprar nuevo

EUR 229,54
Gastos de envío: EUR 14,22
De Reino Unido a Estados Unidos de America

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Publicado por Wiley, 2024
ISBN 10: 1394233922 ISBN 13: 9781394233922
Nuevo Tapa dura

Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. 2024. 1st Edition. hardcover. . . . . . Books ship from the US and Ireland. Nº de ref. del artículo: V9781394233922

Contactar al vendedor

Comprar nuevo

EUR 271,55
Gastos de envío: EUR 9,08
A Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Kanak Kalita
Publicado por John Wiley & Sons Inc, New York, 2024
ISBN 10: 1394233922 ISBN 13: 9781394233922
Nuevo Tapa dura

Librería: AussieBookSeller, Truganina, VIC, Australia

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: new. Hardcover. METAHEURISTICS for MACHINE LEARNING The book unlocks the power of nature-inspired optimization in machine learning and presents a comprehensive guide to cutting-edge algorithms, interdisciplinary insights, and real-world applications. The field of metaheuristic optimization algorithms is experiencing rapid growth, both in academic research and industrial applications. These nature-inspired algorithms, which draw on phenomena like evolution, swarm behavior, and neural systems, have shown remarkable efficiency in solving complex optimization problems. With advancements in machine learning and artificial intelligence, the application of metaheuristic optimization techniques has expanded, demonstrating significant potential in optimizing machine learning models, hyperparameter tuning, and feature selection, among other use-cases. In the industrial landscape, these techniques are becoming indispensable for solving real-world problems in sectors ranging from healthcare to cybersecurity and sustainability. Businesses are incorporating metaheuristic optimization into machine learning workflows to improve decision-making, automate processes, and enhance system performance. As the boundaries of what is computationally possible continue to expand, the integration of metaheuristic optimization and machine learning represents a pioneering frontier in computational intelligence, making this book a timely resource for anyone involved in this interdisciplinary field. Metaheuristics for Machine Learning: Algorithms and Applications serves as a comprehensive guide to the intersection of nature-inspired optimization and machine learning. Authored by leading experts, this book seamlessly integrates insights from computer science, biology, and mathematics to offer a panoramic view of the latest advancements in metaheuristic algorithms. Youll find detailed yet accessible discussions of algorithmic theory alongside real-world case studies that demonstrate their practical applications in machine learning optimization. Perfect for researchers, practitioners, and students, this book provides cutting-edge content with a focus on applicability and interdisciplinary knowledge. Whether you aim to optimize complex systems, delve into neural networks, or enhance predictive modeling, this book arms you with the tools and understanding you need to tackle challenges efficiently. Equip yourself with this essential resource and navigate the ever-evolving landscape of machine learning and optimization with confidence. Audience The book is aimed at a broad audience encompassing researchers, practitioners, and students in the fields of computer science, data science, engineering, and mathematics. The detailed but accessible content makes it a must-have for both academia and industry professionals interested in the optimization aspects of machine learning algorithms. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Nº de ref. del artículo: 9781394233922

Contactar al vendedor

Comprar nuevo

EUR 272,71
Gastos de envío: EUR 31,99
De Australia a Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito