Librería:
Kennys Bookstore, Olney, MD, Estados Unidos de America
Calificación del vendedor: 4 de 5 estrellas
Vendedor de AbeBooks desde 9 de octubre de 2009
2021. Paperback. . . . . . Books ship from the US and Ireland. N° de ref. del artículo V9781470465759
This book discusses advances in maximal function methods related to Poincaré and Sobolev inequalities, pointwise estimates and approximation for Sobolev functions, Hardy's inequalities, and partial differential equations. Capacities are needed for fine properties of Sobolev functions and characterization of Sobolev spaces with zero boundary values. The authors consider several uniform quantitative conditions that are self-improving, such as Hardy's inequalities, capacity density conditions, and reverse Hölder inequalities. They also study Muckenhoupt weight properties of distance functions and combine these with weighted norm inequalities; notions of dimension are then used to characterize density conditions and to give sufficient and necessary conditions for Hardy's inequalities. At the end of the book, the theory of weak solutions to the p -Laplace equation and the use of maximal function techniques is this context are discussed.
The book is directed to researchers and graduate students interested in applications of geometric and harmonic analysis in Sobolev spaces and partial differential equations.
Acerca del autor:
Juha Kinnunen, Aalto University, Finland.
Juha Lehrback, University of Jyvaskyla, Finland.
Antti Vahakangas, University of Jyvaskyla, Finland.
Título: Maximal Function Methods for Sobolev Spaces
Editorial: American Mathematical Society
Encuadernación: Encuadernación de tapa blanda
Condición: New
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: FW-9781470465759
Cantidad disponible: 12 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 338 pages. 10.00x7.00x1.00 inches. In Stock. Nº de ref. del artículo: __1470465752
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Discusses advances in maximal function methods related to Poincare and Sobolev inequalities, pointwise estimates and approximation for Sobolev functions, Hardy s inequalities, and partial differential equations. Nº de ref. del artículo: 595975494
Cantidad disponible: Más de 20 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. New copy - Usually dispatched within 4 working days. Nº de ref. del artículo: B9781470465759
Cantidad disponible: 12 disponibles
Librería: Rarewaves.com UK, London, Reino Unido
Paperback. Condición: New. This book discusses advances in maximal function methods related to Poincaré and Sobolev inequalities, pointwise estimates and approximation for Sobolev functions, Hardy's inequalities, and partial differential equations. Capacities are needed for fine properties of Sobolev functions and characterization of Sobolev spaces with zero boundary values. The authors consider several uniform quantitative conditions that are self-improving, such as Hardy's inequalities, capacity density conditions, and reverse Hölder inequalities. They also study Muckenhoupt weight properties of distance functions and combine these with weighted norm inequalities; notions of dimension are then used to characterize density conditions and to give sufficient and necessary conditions for Hardy's inequalities. At the end of the book, the theory of weak solutions to the p -Laplace equation and the use of maximal function techniques is this context are discussed.The book is directed to researchers and graduate students interested in applications of geometric and harmonic analysis in Sobolev spaces and partial differential equations. Nº de ref. del artículo: LU-9781470465759
Cantidad disponible: 5 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Neuware. Nº de ref. del artículo: 9781470465759
Cantidad disponible: 2 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Nº de ref. del artículo: 401287489
Cantidad disponible: 3 disponibles
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
Paperback. Condición: New. This book discusses advances in maximal function methods related to Poincaré and Sobolev inequalities, pointwise estimates and approximation for Sobolev functions, Hardy's inequalities, and partial differential equations. Capacities are needed for fine properties of Sobolev functions and characterization of Sobolev spaces with zero boundary values. The authors consider several uniform quantitative conditions that are self-improving, such as Hardy's inequalities, capacity density conditions, and reverse Hölder inequalities. They also study Muckenhoupt weight properties of distance functions and combine these with weighted norm inequalities; notions of dimension are then used to characterize density conditions and to give sufficient and necessary conditions for Hardy's inequalities. At the end of the book, the theory of weak solutions to the p -Laplace equation and the use of maximal function techniques is this context are discussed.The book is directed to researchers and graduate students interested in applications of geometric and harmonic analysis in Sobolev spaces and partial differential equations. Nº de ref. del artículo: LU-9781470465759
Cantidad disponible: 5 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 26396138142
Cantidad disponible: 3 disponibles