An Introduction to Statistical Learning: with Applications in Python (Springer Texts in Statistics)

James, Gareth,Witten, Daniela,Hastie, Trevor,Tibshirani, Robert,Taylor, Jonathan

ISBN 10: 3031391896 ISBN 13: 9783031391897
Editorial: Springer, 2024
Usado paperback

Librería: Books From California, Simi Valley, CA, Estados Unidos de America Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Vendedor de AbeBooks desde 14 de agosto de 2001

Este artículo en concreto ya no está disponible.

Descripción

Descripción:

Cover and edges may have some wear. N° de ref. del artículo mon0003684081

Denunciar este artículo

Sinopsis:

An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years.

Acerca del autor:

Gareth James is the John H. Harland Dean of Goizueta Business School at Emory University. He has published an extensive body of methodological work in the domain of statistical learning with particular emphasis on high-dimensional and functional data. The conceptual framework for this book grew out of his MBA elective courses in this area.

Daniela Witten is a professor of statistics and biostatistics, and the Dorothy Gilford Endowed Chair, at University of Washington. Her research focuses largely on statistical machine learning techniques for the analysis of complex, messy, and large-scale data, with an emphasis on unsupervised learning.

Trevor Hastie and Robert Tibshirani are professors of statistics at Stanford University and are co-authors of the successful textbook Elements of Statistical Learning. Hastie and Tibshirani developed generalized additive models and wrote a popular book with that title. Hastie co-developed much of the statistical modeling software and environment in R, and invented principal curves and surfaces. Tibshirani invented the lasso and is co-author of the very successful book, An Introduction to the Bootstrap. They are both elected members of the US National Academy of Sciences. 

Jonathan Taylor is a professor of statistics at Stanford University. His research focuses on selective inference and signal detection in structured noise.


"Sobre este título" puede pertenecer a otra edición de este libro.

Detalles bibliográficos

Título: An Introduction to Statistical Learning: ...
Editorial: Springer
Año de publicación: 2024
Encuadernación: paperback
Condición: Very Good

Los mejores resultados en AbeBooks

Imagen de archivo

James, Gareth,Witten, Daniela,Hastie, Trevor,Tibshirani, Robert,Taylor, Jonathan
Publicado por Springer, 2024
ISBN 10: 3031391896 ISBN 13: 9783031391897
Antiguo o usado paperback

Librería: Books From California, Simi Valley, CA, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

paperback. Condición: Very Good. Nº de ref. del artículo: mon0003840990

Contactar al vendedor

Comprar usado

EUR 64,63
EUR 4,25 shipping
Se envía dentro de Estados Unidos de America

Cantidad disponible: 5 disponibles

Añadir al carrito

Imagen de archivo

James, Gareth; Witten, Daniela; Hastie, Trevor; Tibshirani, Robert; Taylor, Jonathan
Publicado por Springer, 2024
ISBN 10: 3031391896 ISBN 13: 9783031391897
Antiguo o usado Tapa blanda

Librería: BGV Books LLC, Murray, KY, Estados Unidos de America

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: Good. Exact ISBN match. Immediate shipping. No funny business. Nº de ref. del artículo: A9783031391897Ua

Contactar al vendedor

Comprar usado

EUR 66,95
Gastos de envío gratis
Se envía dentro de Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Gareth James
Publicado por Springer, 2024
ISBN 10: 3031391896 ISBN 13: 9783031391897
Nuevo PAP

Librería: PBShop.store UK, Fairford, GLOS, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: S0-9783031391897

Contactar al vendedor

Comprar nuevo

EUR 74,01
EUR 8,69 shipping
Se envía de Reino Unido a Estados Unidos de America

Cantidad disponible: 10 disponibles

Añadir al carrito

Imagen del vendedor

James, Gareth; Witten, Daniela; Hastie, Trevor; Tibshirani, Robert; Taylor, Jonathan
Publicado por Springer Verlag GmbH, 2024
ISBN 10: 3031391896 ISBN 13: 9783031391897
Nuevo Tapa blanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 907564631

Contactar al vendedor

Comprar nuevo

EUR 75,30
EUR 48,99 shipping
Se envía de Alemania a Estados Unidos de America

Cantidad disponible: 3 disponibles

Añadir al carrito

Imagen del vendedor

Gareth James (u. a.)
Publicado por Springer, 2024
ISBN 10: 3031391896 ISBN 13: 9783031391897
Nuevo Taschenbuch

Librería: preigu, Osnabrück, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. An Introduction to Statistical Learning | with Applications in Python | Gareth James (u. a.) | Taschenbuch | xv | Englisch | 2024 | Springer | EAN 9783031391897 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Nº de ref. del artículo: 129577025

Contactar al vendedor

Comprar nuevo

EUR 77,20
EUR 70,00 shipping
Se envía de Alemania a Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

James, Gareth (Author)/ Witten, Daniela (Author)/ Hastie, Trevor (Author)/ Tibshirani, Robert (Author)/ Taylor, Jonathan (Author)
Publicado por Springer, 2024
ISBN 10: 3031391896 ISBN 13: 9783031391897
Nuevo Paperback

Librería: Revaluation Books, Exeter, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: Brand New. 75 pages. 10.00x7.00x10.00 inches. In Stock. Nº de ref. del artículo: __3031391896

Contactar al vendedor

Comprar nuevo

EUR 82,10
EUR 17,08 shipping
Se envía de Reino Unido a Estados Unidos de America

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Gareth James
ISBN 10: 3031391896 ISBN 13: 9783031391897
Nuevo Paperback

Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: new. Paperback. An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R(ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users. An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9783031391897

Contactar al vendedor

Comprar nuevo

EUR 84,94
Gastos de envío gratis
Se envía dentro de Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Gareth James
ISBN 10: 3031391896 ISBN 13: 9783031391897
Nuevo Taschenbuch
Impresión bajo demanda

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data.Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R(ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.Springer Nature c/o IBS, Benzstrasse 21, 48619 Heek 624 pp. Englisch. Nº de ref. del artículo: 9783031391897

Contactar al vendedor

Comprar nuevo

EUR 85,59
EUR 60,00 shipping
Se envía de Alemania a Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Gareth James
ISBN 10: 3031391896 ISBN 13: 9783031391897
Nuevo Taschenbuch

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - An Introduction to Statistical Learningprovides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wroteAn Introduction to Statistical Learning, With Applications in R(ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users. Nº de ref. del artículo: 9783031391897

Contactar al vendedor

Comprar nuevo

EUR 85,59
EUR 66,49 shipping
Se envía de Alemania a Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Gareth James
Publicado por Springer, Springer Jul 2024, 2024
ISBN 10: 3031391896 ISBN 13: 9783031391897
Nuevo Taschenbuch

Librería: Rheinberg-Buch Andreas Meier eK, Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Neuware -An Introduction to Statistical Learningprovides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wroteAn Introduction to Statistical Learning, With Applications in R(ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users. 624 pp. Englisch. Nº de ref. del artículo: 9783031391897

Contactar al vendedor

Comprar nuevo

EUR 85,59
EUR 23,00 shipping
Se envía de Alemania a Estados Unidos de America

Cantidad disponible: 2 disponibles

Añadir al carrito

Existen otras 9 copia(s) de este libro

Ver todos los resultados de su búsqueda