Introduction to Semi-Supervised Learning (Paperback or Softback)

Zhu, Xiaojin

ISBN 10: 3031004205 ISBN 13: 9783031004209
Editorial: Springer 6/8/2009, 2009
Nuevos Paperback or Softback

Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Vendedor de AbeBooks desde 23 de enero de 2002

Este artículo en concreto ya no está disponible.

Descripción

Descripción:

Introduction to Semi-Supervised Learning. N° de ref. del artículo BBS-9783031004209

Denunciar este artículo

Sinopsis:

Semi-supervised learning is a learning paradigm concerned with the study of how computers and natural systems such as humans learn in the presence of both labeled and unlabeled data. Traditionally, learning has been studied either in the unsupervised paradigm (e.g., clustering, outlier detection) where all the data are unlabeled, or in the supervised paradigm (e.g., classification, regression) where all the data are labeled. The goal of semi-supervised learning is to understand how combining labeled and unlabeled data may change the learning behavior, and design algorithms that take advantage of such a combination. Semi-supervised learning is of great interest in machine learning and data mining because it can use readily available unlabeled data to improve supervised learning tasks when the labeled data are scarce or expensive. Semi-supervised learning also shows potential as a quantitative tool to understand human category learning, where most of the input is self-evidently unlabeled. In this introductory book, we present some popular semi-supervised learning models, including self-training, mixture models, co-training and multiview learning, graph-based methods, and semi-supervised support vector machines. For each model, we discuss its basic mathematical formulation. The success of semi-supervised learning depends critically on some underlying assumptions. We emphasize the assumptions made by each model and give counterexamples when appropriate to demonstrate the limitations of the different models. In addition, we discuss semi-supervised learning for cognitive psychology. Finally, we give a computational learning theoretic perspective on semi-supervised learning, and we conclude the book with a brief discussion of open questions in the field. Table of Contents: Introduction to Statistical Machine Learning / Overview of Semi-Supervised Learning / Mixture Models and EM / Co-Training / Graph-Based Semi-Supervised Learning / Semi-Supervised Support Vector Machines/ Human Semi-Supervised Learning / Theory and Outlook

Acerca del autor: Xiaojin Zhu is an assistant professor in the Computer Sciences department at the University of Wisconsin-Madison. His research interests include statistical machine learning and its applications in cognitive psychology, natural language processing, and programming languages. Xiaojin received his Ph.D. from the Language Technologies Institute at Carnegie Mellon University in 2005. He worked on Mandarin speech recognition as a research staff member at IBM China Research Laboratory in 1996-1998. He received M.S. and B.S. in computer science from Shanghai Jiao Tong University in 1996 and 1993, respectively. His other interests include astronomy and geology. Andrew B.Goldberg is a Ph.D. candidate in the Computer Sciences department at the University of Wisconsin-Madison. His research interests lie in statistical machine learning (in particular, semi-supervised learning) and natural language processing. He has served on the program committee for national and international conferences including AAAI, ACL, EMNLP, and NAACL-HLT. Andrew was the recipient of a UW-Madison First-Year Graduate School Fellowship for 2005-2006 and a Yahoo! Key Technical Challenges Grant for 2008-2009. Before his graduate studies, Andrew received a B.A. in computer science from Amherst College, where he graduated magna cum laude with departmental distinction in 2003. He then spent two years writing, editing, and developing teaching materials for introductory computer science and Web programming textbooks at Deitel and Associates. During this time, he contributed to several Deitel books and co-authored the 3rd edition of Internet & World Wide Web How to Program. In 2005, Andrew entered graduate school at UW-Madison and, in 2006 received his M.S. in computer science. In his free time, Andrew enjoys live music, cooking, photography, and travel.

"Sobre este título" puede pertenecer a otra edición de este libro.

Detalles bibliográficos

Título: Introduction to Semi-Supervised Learning (...
Editorial: Springer 6/8/2009
Año de publicación: 2009
Encuadernación: Paperback or Softback
Condición: New
Tipo de libro: Book

Los mejores resultados en AbeBooks

Imagen del vendedor

Xiaojin Zhu (u. a.)
Publicado por Springer, 2009
ISBN 10: 3031004205 ISBN 13: 9783031004209
Nuevo Taschenbuch
Impresión bajo demanda

Librería: preigu, Osnabrück, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Introduction to Semi-Supervised Learning | Xiaojin Zhu (u. a.) | Taschenbuch | xii | Englisch | 2009 | Springer | EAN 9783031004209 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand. Nº de ref. del artículo: 121974921

Contactar al vendedor

Comprar nuevo

EUR 34,10
EUR 70,00 shipping
Se envía de Alemania a Estados Unidos de America

Cantidad disponible: 5 disponibles

Añadir al carrito

Imagen de archivo

Xiaojin Zhu,Andrew. B Goldberg
Publicado por Springer 2009-06-08, 2009
ISBN 10: 3031004205 ISBN 13: 9783031004209
Nuevo Paperback

Librería: Chiron Media, Wallingford, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: New. Nº de ref. del artículo: 6666-GRD-9783031004209

Contactar al vendedor

Comprar nuevo

EUR 34,15
EUR 17,76 shipping
Se envía de Reino Unido a Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Andrew. B Goldberg
ISBN 10: 3031004205 ISBN 13: 9783031004209
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Semi-supervised learning is a learning paradigm concerned with the study of how computers and natural systems such as humans learn in the presence of both labeled and unlabeled data. Traditionally, learning has been studied either in the unsupervised paradigm (e.g., clustering, outlier detection) where all the data are unlabeled, or in the supervised paradigm (e.g., classification, regression) where all the data are labeled. The goal of semi-supervised learning is to understand how combining labeled and unlabeled data may change the learning behavior, and design algorithms that take advantage of such a combination. Semi-supervised learning is of great interest in machine learning and data mining because it can use readily available unlabeled data to improve supervised learning tasks when the labeled data are scarce or expensive. Semi-supervised learning also shows potential as a quantitative tool to understand human category learning, where most of the input is self-evidently unlabeled. In this introductory book, we present some popular semi-supervised learning models, including self-training, mixture models, co-training and multiview learning, graph-based methods, and semi-supervised support vector machines. For each model, we discuss its basic mathematical formulation. The success of semi-supervised learning depends critically on some underlying assumptions. We emphasize the assumptions made by each model and give counterexamples when appropriate to demonstrate the limitations of the different models. In addition, we discuss semi-supervised learning for cognitive psychology. Finally, we give a computational learning theoretic perspective on semi-supervised learning, and we conclude the book with a brief discussion of open questions in the field. Table of Contents: Introduction to Statistical Machine Learning / Overview of Semi-Supervised Learning / Mixture Models and EM / Co-Training / Graph-Based Semi-Supervised Learning / Semi-Supervised Support Vector Machines / Human Semi-Supervised Learning / Theory and Outlook 132 pp. Englisch. Nº de ref. del artículo: 9783031004209

Contactar al vendedor

Comprar nuevo

EUR 35,30
EUR 23,00 shipping
Se envía de Alemania a Estados Unidos de America

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Andrew. B Goldberg
ISBN 10: 3031004205 ISBN 13: 9783031004209
Nuevo Taschenbuch
Impresión bajo demanda

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Semi-supervised learning is a learning paradigm concerned with the study of how computers and natural systems such as humans learn in the presence of both labeled and unlabeled data. Traditionally, learning has been studied either in the unsupervised paradigm (e.g., clustering, outlier detection) where all the data are unlabeled, or in the supervised paradigm (e.g., classification, regression) where all the data are labeled. The goal of semi-supervised learning is to understand how combining labeled and unlabeled data may change the learning behavior, and design algorithms that take advantage of such a combination. Semi-supervised learning is of great interest in machine learning and data mining because it can use readily available unlabeled data to improve supervised learning tasks when the labeled data are scarce or expensive. Semi-supervised learning also shows potential as a quantitative tool to understand human category learning, where most of the input is self-evidently unlabeled. In this introductory book, we present some popular semi-supervised learning models, including self-training, mixture models, co-training and multiview learning, graph-based methods, and semi-supervised support vector machines. For each model, we discuss its basic mathematical formulation. The success of semi-supervised learning depends critically on some underlying assumptions. We emphasize the assumptions made by each model and give counterexamples when appropriate to demonstrate the limitations of the different models. In addition, we discuss semi-supervised learning for cognitive psychology. Finally, we give a computational learning theoretic perspective on semi-supervised learning, and we conclude the book with a brief discussion of open questions in the field. Table of Contents: Introduction to Statistical Machine Learning / Overview of Semi-Supervised Learning / Mixture Models and EM / Co-Training / Graph-Based Semi-Supervised Learning / Semi-Supervised Support Vector Machines/ Human Semi-Supervised Learning / Theory and OutlookSpringer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 132 pp. Englisch. Nº de ref. del artículo: 9783031004209

Contactar al vendedor

Comprar nuevo

EUR 35,30
EUR 60,00 shipping
Se envía de Alemania a Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Andrew. B Goldberg
Publicado por Springer International Publishing, 2009
ISBN 10: 3031004205 ISBN 13: 9783031004209
Nuevo Taschenbuch

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Semi-supervised learning is a learning paradigm concerned with the study of how computers and natural systems such as humans learn in the presence of both labeled and unlabeled data. Traditionally, learning has been studied either in the unsupervised paradigm (e.g., clustering, outlier detection) where all the data are unlabeled, or in the supervised paradigm (e.g., classification, regression) where all the data are labeled. The goal of semi-supervised learning is to understand how combining labeled and unlabeled data may change the learning behavior, and design algorithms that take advantage of such a combination. Semi-supervised learning is of great interest in machine learning and data mining because it can use readily available unlabeled data to improve supervised learning tasks when the labeled data are scarce or expensive. Semi-supervised learning also shows potential as a quantitative tool to understand human category learning, where most of the input is self-evidently unlabeled. In this introductory book, we present some popular semi-supervised learning models, including self-training, mixture models, co-training and multiview learning, graph-based methods, and semi-supervised support vector machines. For each model, we discuss its basic mathematical formulation. The success of semi-supervised learning depends critically on some underlying assumptions. We emphasize the assumptions made by each model and give counterexamples when appropriate to demonstrate the limitations of the different models. In addition, we discuss semi-supervised learning for cognitive psychology. Finally, we give a computational learning theoretic perspective on semi-supervised learning, and we conclude the book with a brief discussion of open questions in the field. Table of Contents: Introduction to Statistical Machine Learning / Overview of Semi-Supervised Learning / Mixture Models and EM / Co-Training / Graph-Based Semi-Supervised Learning / Semi-Supervised Support Vector Machines/ Human Semi-Supervised Learning / Theory and Outlook. Nº de ref. del artículo: 9783031004209

Contactar al vendedor

Comprar nuevo

EUR 35,30
EUR 61,31 shipping
Se envía de Alemania a Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Geffner, Xiaojin; Bazzan, Andrew
Publicado por Springer, 2009
ISBN 10: 3031004205 ISBN 13: 9783031004209
Nuevo Tapa blanda

Librería: GreatBookPricesUK, Woodford Green, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 44569061-n

Contactar al vendedor

Comprar nuevo

EUR 37,02
EUR 17,20 shipping
Se envía de Reino Unido a Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

ZHU, XIAOJIN
Publicado por Springer, 2009
ISBN 10: 3031004205 ISBN 13: 9783031004209
Nuevo Tapa blanda

Librería: Speedyhen, London, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: NEW. Nº de ref. del artículo: NW9783031004209

Contactar al vendedor

Comprar nuevo

EUR 37,03
EUR 47,00 shipping
Se envía de Reino Unido a Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Geffner, Xiaojin; Bazzan, Andrew
Publicado por Springer, 2009
ISBN 10: 3031004205 ISBN 13: 9783031004209
Antiguo o usado Tapa blanda

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 44569061

Contactar al vendedor

Comprar usado

EUR 37,03
EUR 2,24 shipping
Se envía dentro de Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Zhu, Xiaojin; Goldberg, Andrew. B
Publicado por Springer, 2009
ISBN 10: 3031004205 ISBN 13: 9783031004209
Nuevo Tapa blanda

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In English. Nº de ref. del artículo: ria9783031004209_new

Contactar al vendedor

Comprar nuevo

EUR 38,14
EUR 13,73 shipping
Se envía de Reino Unido a Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Geffner, Xiaojin; Bazzan, Andrew
Publicado por Springer, 2009
ISBN 10: 3031004205 ISBN 13: 9783031004209
Nuevo Tapa blanda

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 44569061-n

Contactar al vendedor

Comprar nuevo

EUR 39,40
EUR 2,24 shipping
Se envía dentro de Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Existen otras 11 copia(s) de este libro

Ver todos los resultados de su búsqueda