Librería:
Bellwetherbooks, McKeesport, PA, Estados Unidos de America
Calificación del vendedor: 5 de 5 estrellas
Vendedor de AbeBooks desde 17 de abril de 2007
LIKE NEW/UNREAD!!! Text is Clean and Unmarked! Has a small black line or red dot on the bottom/exterior edge of pages. N° de ref. del artículo MIT-HC-LN-0262046989
New edition of a graduate-level textbook on that focuses on online convex optimization, a machine learning framework that views optimization as a process.
In many practical applications, the environment is so complex that it is not feasible to lay out a comprehensive theoretical model and use classical algorithmic theory and/or mathematical optimization. Introduction to Online Convex Optimization presents a robust machine learning approach that contains elements of mathematical optimization, game theory, and learning theory: an optimization method that learns from experience as more aspects of the problem are observed. This view of optimization as a process has led to some spectacular successes in modeling and systems that have become part of our daily lives.
Based on the “Theoretical Machine Learning” course taught by the author at Princeton University, the second edition of this widely used graduate level text features:
Acerca del autor: Elad Hazan is Professor of Computer Science at Princeton University and cofounder and director of Google AI Princeton. An innovator in the design and analysis of algorithms for basic problems in machine learning and optimization, he is coinventor of the AdaGrad optimization algorithm for deep learning, the first adaptive gradient method.
Título: Introduction to Online Convex Optimization, ...
Editorial: The MIT Press
Año de publicación: 2022
Encuadernación: hardcover
Condición: As New
Edición: 2.
Librería: Speedyhen, London, Reino Unido
Condición: NEW. Nº de ref. del artículo: NW9780262046985
Cantidad disponible: 7 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 44188647
Cantidad disponible: 15 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 44188647-n
Cantidad disponible: 15 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Nº de ref. del artículo: 402257222
Cantidad disponible: 4 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 26395201177
Cantidad disponible: 4 disponibles
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
Hardcover. Condición: new. Hardcover. New edition of a graduate-level textbook on that focuses on online convex optimization, a machine learning framework that views optimization as a process.New edition of a graduate-level textbook on that focuses on online convex optimization, a machine learning framework that views optimization as a process.In many practical applications, the environment is so complex that it is not feasible to lay out a comprehensive theoretical model and use classical algorithmic theory and/or mathematical optimization. Introduction to Online Convex Optimization presents a robust machine learning approach that contains elements of mathematical optimization, game theory, and learning theory- an optimization method that learns from experience as more aspects of the problem are observed. This view of optimization as a process has led to some spectacular successes in modeling and systems that have become part of our daily lives.Based on the "Theoretical Machine Learning" course taught by the author at Princeton University, the second edition of this widely used graduate level text features-Thoroughly updated material throughoutNew chapters on boosting, adaptive regret, and approachability and expanded exposition on optimizationExamples of applications, including prediction from expert advice, portfolio selection, matrix completion and recommendation systems, SVM training, offered throughoutExercises that guide students in completing parts of proofs "This book describes a machine learning framework that contains elements of mathematical optimization, game theory, and computational learning theory"-- Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9780262046985
Cantidad disponible: 1 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 44188647-n
Cantidad disponible: 4 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
HRD. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: GB-9780262046985
Cantidad disponible: 7 disponibles
Librería: INDOO, Avenel, NJ, Estados Unidos de America
Condición: As New. Unread copy in mint condition. Nº de ref. del artículo: RH9780262046985
Cantidad disponible: Más de 20 disponibles
Librería: INDOO, Avenel, NJ, Estados Unidos de America
Condición: New. Brand New. Nº de ref. del artículo: 9780262046985
Cantidad disponible: Más de 20 disponibles