Librería:
Best Price, Torrance, CA, Estados Unidos de America
Calificación del vendedor: 5 de 5 estrellas
Vendedor de AbeBooks desde 30 de agosto de 2024
SUPER FAST SHIPPING. N° de ref. del artículo 9789048160792
In case you are considering to adopt this book for courses with over 50 students, please contact ties.nijssen@springer.com for more information.
This introduction to mathematical logic starts with propositional calculus and first-order logic. Topics covered include syntax, semantics, soundness, completeness, independence, normal forms, vertical paths through negation normal formulas, compactness, Smullyan's Unifying Principle, natural deduction, cut-elimination, semantic tableaux, Skolemization, Herbrand's Theorem, unification, duality, interpolation, and definability.
The last three chapters of the book provide an introduction to type theory (higher-order logic). It is shown how various mathematical concepts can be formalized in this very expressive formal language. This expressive notation facilitates proofs of the classical incompleteness and undecidability theorems which are very elegant and easy to understand. The discussion of semantics makes clear the important distinction between standard and nonstandard models which is so important in understanding puzzling phenomena such as the incompleteness theorems and Skolem's Paradox about countable models of set theory.
Some of the numerous exercises require giving formal proofs. A computer program called ETPS which is available from the web facilitates doing and checking such exercises.
Audience: This volume will be of interest to mathematicians, computer scientists, and philosophers in universities, as well as to computer scientists in industry who wish to use higher-order logic for hardware and software specification and verification.
Reseña del editor:
In case you are considering to adopt this book for courses with over 50 students, please contact ties.nijssen@springer.com for more information.
This introduction to mathematical logic starts with propositional calculus and first-order logic. Topics covered include syntax, semantics, soundness, completeness, independence, normal forms, vertical paths through negation normal formulas, compactness, Smullyan's Unifying Principle, natural deduction, cut-elimination, semantic tableaux, Skolemization, Herbrand's Theorem, unification, duality, interpolation, and definability.
The last three chapters of the book provide an introduction to type theory (higher-order logic). It is shown how various mathematical concepts can be formalized in this very expressive formal language. This expressive notation facilitates proofs of the classical incompleteness and undecidability theorems which are very elegant and easy to understand. The discussion of semantics makes clear the important distinction between standard and nonstandard models which is so important in understanding puzzling phenomena such as the incompleteness theorems and Skolem's Paradox about countable models of set theory.
Some of the numerous exercises require giving formal proofs. A computer program called ETPS which is available from the web facilitates doing and checking such exercises.
Audience: This volume will be of interest to mathematicians, computer scientists, and philosophers in universities, as well as to computer scientists in industry who wish to use higher-order logic for hardware and software specification and verification.
Título: An Introduction to Mathematical Logic and ...
Editorial: Springer
Año de publicación: 2010
Encuadernación: Encuadernación de tapa blanda
Condición: New
Edición: 2ª Edición
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Facilitates proofs of the classical incompleteness and undecidability theorems which are very elegant and easy to understandThe discussion of semantics makes clear the important distinction between standard and nonstandard models which is so important i. Nº de ref. del artículo: 5819932
Cantidad disponible: Más de 20 disponibles
Librería: preigu, Osnabrück, Alemania
Taschenbuch. Condición: Neu. An Introduction to Mathematical Logic and Type Theory | To Truth Through Proof | Peter B. Andrews | Taschenbuch | xviii | Englisch | 2010 | Springer Netherland | EAN 9789048160792 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Nº de ref. del artículo: 107245440
Cantidad disponible: 5 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Apr0316110337472
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 11873722-n
Cantidad disponible: 15 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 412 pp. Englisch. Nº de ref. del artículo: 9789048160792
Cantidad disponible: 2 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware 412 pp. Englisch. Nº de ref. del artículo: 9789048160792
Cantidad disponible: 2 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 11873722-n
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9789048160792_new
Cantidad disponible: Más de 20 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
PF. Condición: New. Nº de ref. del artículo: 6666-IUK-9789048160792
Cantidad disponible: 10 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering. Nº de ref. del artículo: 9789048160792
Cantidad disponible: 1 disponibles