Librería:
Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
Calificación del vendedor: 5 de 5 estrellas
Vendedor de AbeBooks desde 12 de octubre de 2005
Paperback. In geometry processing and shape analysis, several applications have been addressed through the properties of the Laplacian spectral kernels and distances, such as commute time, biharmonic, diffusion, and wave distances.Within this context, this book is intended to provide a common background on the definition and computation of the Laplacian spectral kernels and distances for geometry processing and shape analysis. To this end, we define a unified representation of the isotropic and anisotropic discrete Laplacian operator on surfaces and volumes; then, we introduce the associated differential equations, i.e., the harmonic equation, the Laplacian eigenproblem, and the heat equation. Filtering the Laplacian spectrum, we introduce the Laplacian spectral distances, which generalize the commute-time, biharmonic, diffusion, and wave distances, and their discretization in terms of the Laplacian spectrum. As main applications, we discuss the design of smooth functions and the Laplacian smoothing of noisy scalar functions.All the reviewed numerical schemes are discussed and compared in terms of robustness, approximation accuracy, and computational cost, thus supporting the reader in the selection of the most appropriate with respect to shape representation, computational resources, and target application. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de ref. del artículo 9783031014659
In geometry processing and shape analysis, several applications have been addressed through the properties of the Laplacian spectral kernels and distances, such as commute time, biharmonic, diffusion, and wave distances.
Within this context, this book is intended to provide a common background on the definition and computation of the Laplacian spectral kernels and distances for geometry processing and shape analysis. To this end, we define a unified representation of the isotropic and anisotropic discrete Laplacian operator on surfaces and volumes; then, we introduce the associated differential equations, i.e., the harmonic equation, the Laplacian eigenproblem, and the heat equation. Filtering the Laplacian spectrum, we introduce the Laplacian spectral distances, which generalize the commute-time, biharmonic, diffusion, and wave distances, and their discretization in terms of the Laplacian spectrum. As main applications, we discuss the design of smooth functions and the Laplacian smoothing of noisy scalar functions.
All the reviewed numerical schemes are discussed and compared in terms of robustness, approximation accuracy, and computational cost, thus supporting the reader in the selection of the most appropriate with respect to shape representation, computational resources, and target application.
Acerca del autor: Giuseppe Patane is a researcher at CNR-IMATI (2006-today) Institute for Applied Mathematics and Information Technologies-Italian National Research Council. Since 2001, his research activities have been focused on the definition of paradigms and algorithms for modeling and analyzing digital shapes and multidimensional data. He received a Ph.D. in Mathematics and Applications from the University of Genova (2005) and a Post-Lauream Degree Master in Applications of Mathematics to Industry from the F. Severi National Institute for Advanced Mathematics, Department of Mathematics and Applications-University of Milan (2000).
Título: An Introduction to Laplacian Spectral ...
Editorial: Springer International Publishing AG, Cham
Año de publicación: 2017
Encuadernación: Paperback
Condición: new
Librería: Speedyhen, London, Reino Unido
Condición: NEW. Nº de ref. del artículo: NW9783031014659
Cantidad disponible: 1 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 44568266-n
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: GB-9783031014659
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 44568266
Cantidad disponible: Más de 20 disponibles
Librería: preigu, Osnabrück, Alemania
Taschenbuch. Condición: Neu. An Introduction to Laplacian Spectral Distances and Kernels | Theory, Computation, and Applications | Giuseppe Patanè | Taschenbuch | xx | Englisch | 2017 | Springer Nature Switzerland | EAN 9783031014659 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Nº de ref. del artículo: 121975646
Cantidad disponible: 5 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In English. Nº de ref. del artículo: ria9783031014659_new
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 44568266-n
Cantidad disponible: Más de 20 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar3113020035231
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 44568266
Cantidad disponible: Más de 20 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
PF. Condición: New. Nº de ref. del artículo: 6666-IUK-9783031014659
Cantidad disponible: 10 disponibles