Sinopsis
Given $n$ general points $p_1, p_2, \ldots , p_n \in \mathbb P^r$, it is natural to ask when there exists a curve $C \subset \mathbb P^r$, of degree $d$ and genus $g$, passing through $p_1, p_2, \ldots , p_n$. In this paper, the authors give a complete answer to this question for curves $C$ with nonspecial hyperplane section. This result is a consequence of our main theorem, which states that the normal bundle $N_C$ of a general nonspecial curve of degree $d$ and genus $g$ in $\mathbb P^r$ (with $d \geq g + r$) has the property of interpolation (i.e. that for a general effective divisor $D$ of any degree on $C$, either $H^0(N_C(-D)) = 0$ or $H^1(N_C(-D)) = 0$), with exactly three exceptions.
Acerca del autor
Atanas Atanasov, Harvard University, Cambridge, Massachusetts.
Eric Larson, Stanford University, California.
David Yang, Massachusetts Institute of Technology, Cambridge, Massachusetts.
"Sobre este título" puede pertenecer a otra edición de este libro.