Librería:
GreatBookPrices, Columbia, MD, Estados Unidos de America
Calificación del vendedor: 5 de 5 estrellas
Vendedor de AbeBooks desde 6 de abril de 2009
Unread book in perfect condition. N° de ref. del artículo 27914721
Motivated by the theory of turbulence in fluids, the physicist and chemist Lars Onsager conjectured in 1949 that weak solutions to the incompressible Euler equations might fail to conserve energy if their spatial regularity was below 1/3-Holder. In this book, Philip Isett uses the method of convex integration to achieve the best-known results regarding nonuniqueness of solutions and Onsager's conjecture. Focusing on the intuition behind the method, the ideas introduced now play a pivotal role in the ongoing study of weak solutions to fluid dynamics equations. The construction itself--an intricate algorithm with hidden symmetries--mixes together transport equations, algebra, the method of nonstationary phase, underdetermined partial differential equations (PDEs), and specially designed high-frequency waves built using nonlinear phase functions. The powerful "Main Lemma"--used here to construct nonzero solutions with compact support in time and to prove nonuniqueness of solutions to the initial value problem--has been extended to a broad range of applications that are surveyed in the appendix. Appropriate for students and researchers studying nonlinear PDEs, this book aims to be as robust as possible and pinpoints the main difficulties that presently stand in the way of a full solution to Onsager's conjecture.
Acerca del autor: Philip Isett is assistant professor of mathematics at the University of Texas, Austin.
Título: Hölder Continuous Euler Flows in Three ...
Editorial: Princeton University Press
Año de publicación: 2017
Encuadernación: Encuadernación de tapa blanda
Condición: As New
Librería: Academybookshop, Long Island City, NY, Estados Unidos de America
Paperback. Condición: New. Nº de ref. del artículo: 47-2-gj8a-Holder
Cantidad disponible: 2 disponibles
Librería: Academybookshop, Long Island City, NY, Estados Unidos de America
Paperback. Condición: New. Nº de ref. del artículo: F-gj24-06701
Cantidad disponible: 1 disponibles
Librería: Academybookshop, Long Island City, NY, Estados Unidos de America
Paperback. Condición: New. Nº de ref. del artículo: N-gj24-09818
Cantidad disponible: 1 disponibles
Librería: Academybookshop, Long Island City, NY, Estados Unidos de America
Paperback. Condición: New. Nº de ref. del artículo: N-gj24-09817
Cantidad disponible: 1 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: WP-9780691174839
Cantidad disponible: 1 disponibles
Librería: moluna, Greven, Alemania
Kartoniert / Broschiert. Condición: New. Über den AutorPhilip Isett. Nº de ref. del artículo: 146322113
Cantidad disponible: 1 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 208. Nº de ref. del artículo: 26375054112
Cantidad disponible: 1 disponibles
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condición: New. Series: Annals of Mathematics Studies. Num Pages: 216 pages. BIC Classification: PB; PHU; PN. Category: (P) Professional & Vocational; (U) Tertiary Education (US: College). Dimension: 229 x 152 x 10. Weight in Grams: 28. . 2017. Paperback. . . . . Nº de ref. del artículo: V9780691174839
Cantidad disponible: 1 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. pp. 208. Nº de ref. del artículo: 372072703
Cantidad disponible: 1 disponibles
Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America
Paperback. Condición: New. Motivated by the theory of turbulence in fluids, the physicist and chemist Lars Onsager conjectured in 1949 that weak solutions to the incompressible Euler equations might fail to conserve energy if their spatial regularity was below 1/3-Holder. In this book, Philip Isett uses the method of convex integration to achieve the best-known results regarding nonuniqueness of solutions and Onsager's conjecture. Focusing on the intuition behind the method, the ideas introduced now play a pivotal role in the ongoing study of weak solutions to fluid dynamics equations. The construction itself--an intricate algorithm with hidden symmetries--mixes together transport equations, algebra, the method of nonstationary phase, underdetermined partial differential equations (PDEs), and specially designed high-frequency waves built using nonlinear phase functions. The powerful "Main Lemma"--used here to construct nonzero solutions with compact support in time and to prove nonuniqueness of solutions to the initial value problem--has been extended to a broad range of applications that are surveyed in the appendix.Appropriate for students and researchers studying nonlinear PDEs, this book aims to be as robust as possible and pinpoints the main difficulties that presently stand in the way of a full solution to Onsager's conjecture. Nº de ref. del artículo: LU-9780691174839
Cantidad disponible: 1 disponibles