Graph Data Mining
Qi Xuan
Vendido por buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Vendedor de AbeBooks desde 23 de enero de 2017
Nuevos - Encuadernación de tapa dura
Condición: Nuevo
Cantidad disponible: 2 disponibles
Añadir al carritoVendido por buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Vendedor de AbeBooks desde 23 de enero de 2017
Condición: Nuevo
Cantidad disponible: 2 disponibles
Añadir al carritoNeuware -Graph data is powerful, thanks to its ability to model arbitrary relationship between objects and is encountered in a range of real-world applications in fields such as bioinformatics, traffic network, scientific collaboration, world wide web and social networks. Graph data mining is used to discover useful information and knowledge from graph data. The complications of nodes, links and the semi-structure form present challenges in terms of the computation tasks, e.g., node classification, link prediction, and graph classification. In this context, various advanced techniques, including graph embedding and graph neural networks, have recently been proposed to improve the performance of graph data mining.This book provides a state-of-the-art review of graph data mining methods. It addresses a current hot topic ¿ the security of graph data mining ¿ and proposes a series of detection methods to identify adversarial samples in graph data. In addition, it introduces readers to graph augmentation and subgraph networks to further enhance the models, i.e., improve their accuracy and robustness. Lastly, the book describes the applications of these advanced techniques in various scenarios, such as traffic networks, social and technical networks, and blockchains.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 260 pp. Englisch.
N° de ref. del artículo 9789811626081
Graph data is powerful, thanks to its ability to model arbitrary relationship between objects and is encountered in a range of real-world applications in fields such as bioinformatics, traffic network, scientific collaboration, world wide web and social networks. Graph data mining is used to discover useful information and knowledge from graph data. The complications of nodes, links and the semi-structure form present challenges in terms of the computation tasks, e.g., node classification, link prediction, and graph classification. In this context, various advanced techniques, including graph embedding and graph neural networks, have recently been proposed to improve the performance of graph data mining.
This book provides a state-of-the-art review of graph data mining methods. It addresses a current hot topic - the security of graph data mining - and proposes a series of detection methods to identify adversarial samples in graph data. In addition, it introduces readers to graph augmentation and subgraph networks to further enhance the models, i.e., improve their accuracy and robustness. Lastly, the book describes the applications of these advanced techniques in various scenarios, such as traffic networks, social and technical networks, and blockchains.
Qi Xuan is a Professor at the Institute of Cyberspace Security, Zhejiang University of Technology, Hangzhou, China. His current research interests include network science, graph data mining, cyberspace security, and deep learning. He has published more than 50 papers in leading journals and conferences, including IEEE TKDE, IEEE TIE, IEEE TNSE, ICSE, and FSE. He is the reviewer of the journals such like IEEE TKDE, IEEE TIE, IEEE TII, and IEEE TNSE.
Zhongyuan Ruan is a lecturer at the Institute of Cyberspace Security, Zhejiang University of Technology, Hangzhou, China. His current research interests include network science, such as epidemic and information spreading in complex networks, and traffic networks. He has published more than 20 papers in journals such as Physical Review Letters, Physical Review E, Chaos, Scientific Reports, and Physica A.
Yong Min is an Associate Professor at the Institute of Cyberspace Security, Zhejiang University ofTechnology, Hangzhou, China. His research interests include social network analysis, computational communication, and artificial intelligence algorithms. He was named an Excellent Young Teacher of Zhejiang University of Technology. He has hosted and participated in more than ten projects, including those by national and provincial natural science foundations. He has also published over 30 papers, including two in the leading journal Nature and Science, and he holds more than three patents."Sobre este título" puede pertenecer a otra edición de este libro.
Ver la página web de la librería
Widerrufsbelehrung/ Muster-Widerrufsformular/
Allgemeine Geschäftsbedingungen und Kundeninformationen/ Datenschutzerklärung
Widerrufsrecht für Verbraucher
(Verbraucher ist jede natürliche Person, die ein Rechtsgeschäft zu Zwecken abschließt, die überwiegend weder ihrer gewerblichen noch ihrer selbstständigen beruflichen Tätigkeit zugerechnet werden können.)
Widerrufsbelehrung
Widerrufsrecht
Sie haben das Recht, binnen 14 Tagen ohne Angabe von Gründen diesen Vertrag zu widerrufen.
Die Widerrufsfr...
Soweit in der Artikelbeschreibung keine andere Frist angegeben ist, erfolgt die Lieferung der Ware innerhalb von 3-5 Werktagen nach Vertragsschluss, bei Vorauszahlung erst nach Eingang des vollständigen Kaufpreises und der Versandkosten. Alle Preise inkl. MwSt.
Cantidad del pedido | De 60 a 60 días hábiles | De 60 a 60 días hábiles |
---|---|---|
Primer artículo | EUR 60.00 | EUR 75.00 |
Los plazos de entrega los establecen los vendedores y varían según el transportista y la ubicación. Los pedidos que pasan por la aduana pueden sufrir retrasos y los compradores son responsables de los aranceles o tarifas asociadas. Los vendedores pueden ponerse en contacto con usted en relación con cargos adicionales para cubrir cualquier aumento en los costes de envío de los artículos.