Fundamentals of Diophantine Geometry

S. Lang

ISBN 10: 0387908374 ISBN 13: 9780387908373
Editorial: Springer, 1983
Nuevos Buch

Librería: preigu, Osnabrück, Alemania Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Vendedor de AbeBooks desde 5 de agosto de 2024

Este artículo en concreto ya no está disponible.

Descripción

Descripción:

Fundamentals of Diophantine Geometry | S. Lang | Buch | xviii | Englisch | 1983 | Springer | EAN 9780387908373 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand. N° de ref. del artículo 102282233

Denunciar este artículo

Sinopsis:

Diophantine problems represent some of the strongest aesthetic attractions to algebraic geometry. They consist in giving criteria for the existence of solutions of algebraic equations in rings and fields, and eventually for the number of such solutions. The fundamental ring of interest is the ring of ordinary integers Z, and the fundamental field of interest is the field Q of rational numbers. One discovers rapidly that to have all the technical freedom needed in handling general problems, one must consider rings and fields of finite type over the integers and rationals. Furthermore, one is led to consider also finite fields, p-adic fields (including the real and complex numbers) as representing a localization of the problems under consideration. We shall deal with global problems, all of which will be of a qualitative nature. On the one hand we have curves defined over say the rational numbers. Ifthe curve is affine one may ask for its points in Z, and thanks to Siegel, one can classify all curves which have infinitely many integral points. This problem is treated in Chapter VII. One may ask also for those which have infinitely many rational points, and for this, there is only Mordell’s conjecture that if the genus is :;;; 2, then there is only a finite number of rational points.

Reseña del editor: Diophantine problems represent some of the strongest aesthetic attractions to algebraic geometry. They consist in giving criteria for the existence of solutions of algebraic equations in rings and fields, and eventually for the number of such solutions. The fundamental ring of interest is the ring of ordinary integers Z, and the fundamental field of interest is the field Q of rational numbers. One discovers rapidly that to have all the technical freedom needed in handling general problems, one must consider rings and fields of finite type over the integers and rationals. Furthermore, one is led to consider also finite fields, p-adic fields (including the real and complex numbers) as representing a localization of the problems under consideration. We shall deal with global problems, all of which will be of a qualitative nature. On the one hand we have curves defined over say the rational numbers. Ifthe curve is affine one may ask for its points in Z, and thanks to Siegel, one can classify all curves which have infinitely many integral points. This problem is treated in Chapter VII. One may ask also for those which have infinitely many rational points, and for this, there is only Mordell's conjecture that if the genus is :;;; 2, then there is only a finite number of rational points.

"Sobre este título" puede pertenecer a otra edición de este libro.

Detalles bibliográficos

Título: Fundamentals of Diophantine Geometry
Editorial: Springer
Año de publicación: 1983
Encuadernación: Buch
Condición: Neu

Los mejores resultados en AbeBooks

Edición internacional
Edición internacional

Lang, S.
Publicado por Springer, 1983
ISBN 10: 0387908374 ISBN 13: 9780387908373
Nuevo Soft cover
Edición internacional

Librería: Sizzler Texts, SAN GABRIEL, CA, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Soft cover. Condición: New. Estado de la sobrecubierta: New. International Edition. **INTERNATIONAL EDITION** Read carefully before purchase: This book is the international edition in mint condition with the different ISBN and book cover design, the major content is printed in full English as same as the original North American edition. The book printed in black and white, generally send in twenty-four hours after the order confirmed. All shipments go through via USPS/UPS/DHL with tracking numbers. Great professional textbook selling experience and expedite shipping service. Nº de ref. del artículo: ABE-1614423376136

Contactar al vendedor

Comprar nuevo

EUR 35,48
Gastos de envío: EUR 8,61
A Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Edición internacional
Edición internacional

Lang, S.
Publicado por Springer, 1983
ISBN 10: 0387908374 ISBN 13: 9780387908373
Nuevo Soft cover
Edición internacional

Librería: Aideo Books, San Marino, CA, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Soft cover. Condición: New. Estado de la sobrecubierta: New. International Edition. ***INTERNATIONAL EDITION*** Read carefully before purchase: This book is the international edition in mint condition with the different ISBN and book cover design, the major content is printed in full English as same as the original North American edition. The book printed in black and white, generally send in twenty-four hours after the order confirmed. All shipments contain tracking numbers. Great professional textbook selling experience and expedite shipping service. Nº de ref. del artículo: ABE-1614422073510

Contactar al vendedor

Comprar nuevo

EUR 39,94
Gastos de envío: EUR 4,27
A Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Lang, S.
Publicado por Springer, 1983
ISBN 10: 0387908374 ISBN 13: 9780387908373
Antiguo o usado Tapa dura

Librería: Patrico Books, Apollo Beach, FL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

hardcover. Condición: Fair. Ships Out Tomorrow! Nº de ref. del artículo: 240802032

Contactar al vendedor

Comprar usado

EUR 44,40
Gastos de envío: EUR 3,44
A Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Lang, S.
Publicado por Springer, 1983
ISBN 10: 0387908374 ISBN 13: 9780387908373
Antiguo o usado Tapa dura

Librería: Librairie Parrêsia, Figeac, Francia

Calificación del vendedor: 3 de 5 estrellas Valoración 3 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover Aug 29, 1983. Condición: Used: Very Good. Fundamentals of Diophantine Geometry | S. Lang | Springer-Verlag, 1983, in-8 cartonnage éditeur, 369 pages. Solide couverture en bel état général. Intérieur bien frais. [BT1]. Nº de ref. del artículo: 0423UOUWHK5

Contactar al vendedor

Comprar usado

EUR 46,36
Gastos de envío: EUR 32,50
De Francia a Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

S. Lang
Publicado por Springer New York, 1983
ISBN 10: 0387908374 ISBN 13: 9780387908373
Nuevo Tapa dura
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Gebunden. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Diophantine problems represent some of the strongest aesthetic attractions to algebraic geometry. They consist in giving criteria for the existence of solutions of algebraic equations in rings and fields, and eventually for the number of such solutions. The. Nº de ref. del artículo: 5911767

Contactar al vendedor

Comprar nuevo

EUR 98,54
Gastos de envío: EUR 48,99
De Alemania a Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Lang, S.
Publicado por Springer, 1983
ISBN 10: 0387908374 ISBN 13: 9780387908373
Nuevo Tapa dura

Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: ABLIING23Feb2215580173825

Contactar al vendedor

Comprar nuevo

EUR 113,01
Gastos de envío: EUR 3,44
A Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

S. Lang
ISBN 10: 0387908374 ISBN 13: 9780387908373
Nuevo Tapa dura

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Neuware -Diophantine problems represent some of the strongest aesthetic attractions to algebraic geometry. They consist in giving criteria for the existence of solutions of algebraic equations in rings and fields, and eventually for the number of such solutions. The fundamental ring of interest is the ring of ordinary integers Z, and the fundamental field of interest is the field Q of rational numbers. One discovers rapidly that to have all the technical freedom needed in handling general problems, one must consider rings and fields of finite type over the integers and rationals. Furthermore, one is led to consider also finite fields, p-adic fields (including the real and complex numbers) as representing a localization of the problems under consideration. We shall deal with global problems, all of which will be of a qualitative nature. On the one hand we have curves defined over say the rational numbers. Ifthe curve is affine one may ask for its points in Z, and thanks to Siegel, one can classify all curves which have infinitely many integral points. This problem is treated in Chapter VII. One may ask also for those which have infinitely many rational points, and for this, there is only Mordell's conjecture that if the genus is :;;; 2, then there is only a finite number of rational points.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 392 pp. Englisch. Nº de ref. del artículo: 9780387908373

Contactar al vendedor

Comprar nuevo

EUR 117,69
Gastos de envío: EUR 60,00
De Alemania a Estados Unidos de America

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

S. Lang
Publicado por Springer New York Aug 1983, 1983
ISBN 10: 0387908374 ISBN 13: 9780387908373
Nuevo Tapa dura
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Diophantine problems represent some of the strongest aesthetic attractions to algebraic geometry. They consist in giving criteria for the existence of solutions of algebraic equations in rings and fields, and eventually for the number of such solutions. The fundamental ring of interest is the ring of ordinary integers Z, and the fundamental field of interest is the field Q of rational numbers. One discovers rapidly that to have all the technical freedom needed in handling general problems, one must consider rings and fields of finite type over the integers and rationals. Furthermore, one is led to consider also finite fields, p-adic fields (including the real and complex numbers) as representing a localization of the problems under consideration. We shall deal with global problems, all of which will be of a qualitative nature. On the one hand we have curves defined over say the rational numbers. Ifthe curve is affine one may ask for its points in Z, and thanks to Siegel, one can classify all curves which have infinitely many integral points. This problem is treated in Chapter VII. One may ask also for those which have infinitely many rational points, and for this, there is only Mordell's conjecture that if the genus is :;;; 2, then there is only a finite number of rational points. 392 pp. Englisch. Nº de ref. del artículo: 9780387908373

Contactar al vendedor

Comprar nuevo

EUR 117,69
Gastos de envío: EUR 23,00
De Alemania a Estados Unidos de America

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

S. Lang
Publicado por Springer New York, Springer US, 1983
ISBN 10: 0387908374 ISBN 13: 9780387908373
Nuevo Tapa dura

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Diophantine problems represent some of the strongest aesthetic attractions to algebraic geometry. They consist in giving criteria for the existence of solutions of algebraic equations in rings and fields, and eventually for the number of such solutions. The fundamental ring of interest is the ring of ordinary integers Z, and the fundamental field of interest is the field Q of rational numbers. One discovers rapidly that to have all the technical freedom needed in handling general problems, one must consider rings and fields of finite type over the integers and rationals. Furthermore, one is led to consider also finite fields, p-adic fields (including the real and complex numbers) as representing a localization of the problems under consideration. We shall deal with global problems, all of which will be of a qualitative nature. On the one hand we have curves defined over say the rational numbers. Ifthe curve is affine one may ask for its points in Z, and thanks to Siegel, one can classify all curves which have infinitely many integral points. This problem is treated in Chapter VII. One may ask also for those which have infinitely many rational points, and for this, there is only Mordell's conjecture that if the genus is :;;; 2, then there is only a finite number of rational points. Nº de ref. del artículo: 9780387908373

Contactar al vendedor

Comprar nuevo

EUR 122,12
Gastos de envío: EUR 63,76
De Alemania a Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Lang, S.
Publicado por Springer, 1983
ISBN 10: 0387908374 ISBN 13: 9780387908373
Nuevo Tapa dura

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9780387908373_new

Contactar al vendedor

Comprar nuevo

EUR 127,04
Gastos de envío: EUR 13,68
De Reino Unido a Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Existen otras 5 copia(s) de este libro

Ver todos los resultados de su búsqueda