Librería:
Best Price, Torrance, CA, Estados Unidos de America
Calificación del vendedor: 5 de 5 estrellas
Vendedor de AbeBooks desde 30 de agosto de 2024
SUPER FAST SHIPPING. N° de ref. del artículo 9780412233401
This book is aimed at mathematics students, typically in the second year of a university course. The first chapter, however, is suitable for first-year students. Differentiable functions are treated initially from the standpoint of approximating a curved surface locally by a fiat surface. This enables both geometric intuition, and some elementary matrix algebra, to be put to effective use. In Chapter 2, the required theorems - chain rule, inverse and implicit function theorems, etc- are stated, and proved (for n variables), concisely and rigorously. Chapter 3 deals with maxima and minima, including problems with equality and inequality constraints. The chapter includes criteria for discriminating between maxima, minima and saddlepoints for constrained problems; this material is relevant for applications, but most textbooks omit it. In Chapter 4, integration over areas, volumes, curves and surfaces is developed, and both the change-of-variable formula, and the Gauss-Green-Stokes set of theorems are obtained. The integrals are defined with approximative sums (ex pressed concisely by using step-functions); this preserves some geometrical (and physical) concept of what is happening. Consequent on this, the main ideas of the ’differential form’ approach are presented, in a simple form which avoids much of the usual length and complexity. Many examples and exercises are included.
Reseña del editor: This book is aimed at mathematics students, typically in the second year of a university course. The first chapter, however, is suitable for first-year students. Differentiable functions are treated initially from the standpoint of approximating a curved surface locally by a fiat surface. This enables both geometric intuition, and some elementary matrix algebra, to be put to effective use. In Chapter 2, the required theorems - chain rule, inverse and implicit function theorems, etc- are stated, and proved (for n variables), concisely and rigorously. Chapter 3 deals with maxima and minima, including problems with equality and inequality constraints. The chapter includes criteria for discriminating between maxima, minima and saddlepoints for constrained problems; this material is relevant for applications, but most textbooks omit it. In Chapter 4, integration over areas, volumes, curves and surfaces is developed, and both the change-of-variable formula, and the Gauss-Green-Stokes set of theorems are obtained. The integrals are defined with approximative sums (ex pressed concisely by using step-functions); this preserves some geometrical (and physical) concept of what is happening. Consequent on this, the main ideas of the 'differential form' approach are presented, in a simple form which avoids much of the usual length and complexity. Many examples and exercises are included.
Título: Functions of several variables
Editorial: Springer
Año de publicación: 1981
Encuadernación: Encuadernación de tapa blanda
Condición: New
Librería: Richard Roberts Bookseller., KILMARNOCK, Reino Unido
1st. Edn. Paperback. pp. viii, 137. Front cover creased at top corner, else a very good clean and sound copy. Nº de ref. del artículo: 2189
Cantidad disponible: 1 disponibles
Librería: Anybook.com, Lincoln, Reino Unido
Condición: Good. This is an ex-library book and may have the usual library/used-book markings inside.This book has soft covers. In good all round condition. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,300grams, ISBN:0412233401. Nº de ref. del artículo: 5839939
Cantidad disponible: 1 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book is aimed at mathematics students, typically in the second year of a university course. The first chapter, however, is suitable for first-year students. Differentiable functions are treated initially from the standpoint of approximating a curved su. Nº de ref. del artículo: 5914296
Cantidad disponible: Más de 20 disponibles
Librería: preigu, Osnabrück, Alemania
Taschenbuch. Condición: Neu. Functions of several variables | B. Craven | Taschenbuch | viii | Englisch | 1981 | Springer | EAN 9780412233401 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Nº de ref. del artículo: 107101787
Cantidad disponible: 5 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Feb2215580180309
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book is aimed at mathematics students, typically in the second year of a university course. The first chapter, however, is suitable for first-year students. Differentiable functions are treated initially from the standpoint of approximating a curved surface locally by a fiat surface. This enables both geometric intuition, and some elementary matrix algebra, to be put to effective use. In Chapter 2, the required theorems - chain rule, inverse and implicit function theorems, etc- are stated, and proved (for n variables), concisely and rigorously. Chapter 3 deals with maxima and minima, including problems with equality and inequality constraints. The chapter includes criteria for discriminating between maxima, minima and saddlepoints for constrained problems; this material is relevant for applications, but most textbooks omit it. In Chapter 4, integration over areas, volumes, curves and surfaces is developed, and both the change-of-variable formula, and the Gauss-Green-Stokes set of theorems are obtained. The integrals are defined with approximative sums (ex pressed concisely by using step-functions); this preserves some geometrical (and physical) concept of what is happening. Consequent on this, the main ideas of the 'differential form' approach are presented, in a simple form which avoids much of the usual length and complexity. Many examples and exercises are included. 148 pp. Englisch. Nº de ref. del artículo: 9780412233401
Cantidad disponible: 2 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -This book is aimed at mathematics students, typically in the second year of a university course. The first chapter, however, is suitable for first-year students. Differentiable functions are treated initially from the standpoint of approximating a curved surface locally by a fiat surface. This enables both geometric intuition, and some elementary matrix algebra, to be put to effective use. In Chapter 2, the required theorems - chain rule, inverse and implicit function theorems, etc- are stated, and proved (for n variables), concisely and rigorously. Chapter 3 deals with maxima and minima, including problems with equality and inequality constraints. The chapter includes criteria for discriminating between maxima, minima and saddlepoints for constrained problems; this material is relevant for applications, but most textbooks omit it. In Chapter 4, integration over areas, volumes, curves and surfaces is developed, and both the change-of-variable formula, and the Gauss-Green-Stokes set of theorems are obtained. The integrals are defined with approximative sums (ex pressed concisely by using step-functions); this preserves some geometrical (and physical) concept of what is happening. Consequent on this, the main ideas of the 'differential form' approach are presented, in a simple form which avoids much of the usual length and complexity. Many examples and exercises are included.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 148 pp. Englisch. Nº de ref. del artículo: 9780412233401
Cantidad disponible: 1 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
PF. Condición: New. Nº de ref. del artículo: 6666-IUK-9780412233401
Cantidad disponible: 10 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9780412233401_new
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is aimed at mathematics students, typically in the second year of a university course. The first chapter, however, is suitable for first-year students. Differentiable functions are treated initially from the standpoint of approximating a curved surface locally by a fiat surface. This enables both geometric intuition, and some elementary matrix algebra, to be put to effective use. In Chapter 2, the required theorems - chain rule, inverse and implicit function theorems, etc- are stated, and proved (for n variables), concisely and rigorously. Chapter 3 deals with maxima and minima, including problems with equality and inequality constraints. The chapter includes criteria for discriminating between maxima, minima and saddlepoints for constrained problems; this material is relevant for applications, but most textbooks omit it. In Chapter 4, integration over areas, volumes, curves and surfaces is developed, and both the change-of-variable formula, and the Gauss-Green-Stokes set of theorems are obtained. The integrals are defined with approximative sums (ex pressed concisely by using step-functions); this preserves some geometrical (and physical) concept of what is happening. Consequent on this, the main ideas of the 'differential form' approach are presented, in a simple form which avoids much of the usual length and complexity. Many examples and exercises are included. Nº de ref. del artículo: 9780412233401
Cantidad disponible: 1 disponibles