Financial Data Analytics with Machine Learning, Optimization and Statistics (Wiley Finance)

Chen, Sam; Cheung, Ka Chun; Yam, Phillip

ISBN 10: 1119863376 ISBN 13: 9781119863373
Editorial: Wiley, 2024
Nuevos Encuadernación de tapa dura

Librería: Ria Christie Collections, Uxbridge, Reino Unido Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Vendedor de AbeBooks desde 25 de marzo de 2015

Este artículo en concreto ya no está disponible.

Descripción

Descripción:

In. N° de ref. del artículo ria9781119863373_new

Denunciar este artículo

Sinopsis:

An essential introduction to data analytics and Machine Learning techniques in the business sector

In Financial Data Analytics with Machine Learning, Optimization and Statistics, a team consisting of a distinguished applied mathematician and statistician, experienced actuarial professionals and working data analysts delivers an expertly balanced combination of traditional financial statistics, effective machine learning tools, and mathematics. The book focuses on contemporary techniques used for data analytics in the financial sector and the insurance industry with an emphasis on mathematical understanding and statistical principles and connects them with common and practical financial problems. Each chapter is equipped with derivations and proofs―especially of key results―and includes several realistic examples which stem from common financial contexts. The computer algorithms in the book are implemented using Python and R, two of the most widely used programming languages for applied science and in academia and industry, so that readers can implement the relevant models and use the programs themselves.

This book can help readers become well-equipped with the following skills:

  • To evaluate financial and insurance data quality, and use the distilled knowledge obtained from the data after applying data analytic tools to make timely financial decisions
  • To apply effective data dimension reduction tools to enhance supervised learning
  • To describe and select suitable data analytic tools as introduced above for a given dataset depending upon classification or regression prediction purpose

The book covers the competencies tested by several professional examinations, such as the Predictive Analytics Exam offered by the Society of Actuaries, and the Institute and Faculty of Actuaries' Actuarial Statistics Exam.

Besides being an indispensable resource for senior undergraduate and graduate students taking courses in financial engineering, statistics, quantitative finance, risk management, actuarial science, data science, and mathematics for AI, Financial Data Analytics with Machine Learning, Optimization and Statistics also belongs in the libraries of aspiring and practicing quantitative analysts working in commercial and investment banking.

Acerca del autor:

YONGZHAO CHEN (SAM) [BSC(ACTUARSC) & PHD (HKU)] is currently an Assistant Professor at the Department of Mathematics, Statistics and Insurance, The Hang Seng University of Hong Kong. His research interests include actuarial science, especially credibility theory, and data analytics.

KA CHUN CHEUNG [BSC(ACTUARSC) & PHD (HKU), ASA (SOA)] was the Director of the Actuarial Science Programme, and is currently Head and full Professor at the Department of Statistics and Actuarial Science in School of Computing and Data Science, The University of Hong Kong. His current research interests include various topics in actuarial science, including optimal reinsurance, stochastic orders, dependence structures, and extreme value theory.

PHILLIP YAM [BSC(ACTUARSC) & MPHIL (HKU), MAST (CANTAB), DPHIL (OXON)] is currently Director of QFRM programme, and a full Professor at the Department of Statistics of The Chinese University of Hong Kong, also Assistant Dean (Education) of CUHK Faculty of Science, and a Visiting Professor in Columbia University and UTD Business School. He has more than 100 top journal articles in actuarial science, applied mathematics, data analytics, engineering, financial mathematics, operations management, and statistics. His research project CIBer won a Silver Medal in the 48th International Exhibition of Inventions Geneva in 2023.

"Sobre este título" puede pertenecer a otra edición de este libro.

Detalles bibliográficos

Título: Financial Data Analytics with Machine ...
Editorial: Wiley
Año de publicación: 2024
Encuadernación: Encuadernación de tapa dura
Condición: New

Los mejores resultados en AbeBooks

Imagen del vendedor

Chen, Yongzhao; Cheung, Ka Chun; Yam, Phillip
Publicado por Wiley, 2024
ISBN 10: 1119863376 ISBN 13: 9781119863373
Nuevo Tapa dura

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 43562503-n

Contactar al vendedor

Comprar nuevo

EUR 55,79
EUR 2,25 shipping
Se envía dentro de Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Ka Chun Cheung
Publicado por John Wiley & Sons Inc, New York, 2024
ISBN 10: 1119863376 ISBN 13: 9781119863373
Nuevo Tapa dura

Librería: CitiRetail, Stevenage, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: new. Hardcover. An essential introduction to data analytics and Machine Learning techniques in the business sector In Financial Data Analytics with Machine Learning, Optimization and Statistics, a team consisting of a distinguished applied mathematician and statistician, experienced actuarial professionals and working data analysts delivers an expertly balanced combination of traditional financial statistics, effective machine learning tools, and mathematics. The book focuses on contemporary techniques used for data analytics in the financial sector and the insurance industry with an emphasis on mathematical understanding and statistical principles and connects them with common and practical financial problems. Each chapter is equipped with derivations and proofsespecially of key resultsand includes several realistic examples which stem from common financial contexts. The computer algorithms in the book are implemented using Python and R, two of the most widely used programming languages for applied science and in academia and industry, so that readers can implement the relevant models and use the programs themselves. This book can help readers become well-equipped with the following skills: To evaluate financial and insurance data quality, and use the distilled knowledge obtained from the data after applying data analytic tools to make timely financial decisionsTo apply effective data dimension reduction tools to enhance supervised learningTo describe and select suitable data analytic tools as introduced above for a given dataset depending upon classification or regression prediction purpose The book covers the competencies tested by several professional examinations, such as the Predictive Analytics Exam offered by the Society of Actuaries, and the Institute and Faculty of Actuaries' Actuarial Statistics Exam. Besides being an indispensable resource for senior undergraduate and graduate students taking courses in financial engineering, statistics, quantitative finance, risk management, actuarial science, data science, and mathematics for AI, Financial Data Analytics with Machine Learning, Optimization and Statistics also belongs in the libraries of aspiring and practicing quantitative analysts working in commercial and investment banking. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Nº de ref. del artículo: 9781119863373

Contactar al vendedor

Comprar nuevo

EUR 57,06
EUR 42,28 shipping
Se envía de Reino Unido a Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Ka Chun Cheung
Publicado por John Wiley & Sons Inc, New York, 2024
ISBN 10: 1119863376 ISBN 13: 9781119863373
Nuevo Tapa dura

Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: new. Hardcover. An essential introduction to data analytics and Machine Learning techniques in the business sector In Financial Data Analytics with Machine Learning, Optimization and Statistics, a team consisting of a distinguished applied mathematician and statistician, experienced actuarial professionals and working data analysts delivers an expertly balanced combination of traditional financial statistics, effective machine learning tools, and mathematics. The book focuses on contemporary techniques used for data analytics in the financial sector and the insurance industry with an emphasis on mathematical understanding and statistical principles and connects them with common and practical financial problems. Each chapter is equipped with derivations and proofsespecially of key resultsand includes several realistic examples which stem from common financial contexts. The computer algorithms in the book are implemented using Python and R, two of the most widely used programming languages for applied science and in academia and industry, so that readers can implement the relevant models and use the programs themselves. This book can help readers become well-equipped with the following skills: To evaluate financial and insurance data quality, and use the distilled knowledge obtained from the data after applying data analytic tools to make timely financial decisionsTo apply effective data dimension reduction tools to enhance supervised learningTo describe and select suitable data analytic tools as introduced above for a given dataset depending upon classification or regression prediction purpose The book covers the competencies tested by several professional examinations, such as the Predictive Analytics Exam offered by the Society of Actuaries, and the Institute and Faculty of Actuaries' Actuarial Statistics Exam. Besides being an indispensable resource for senior undergraduate and graduate students taking courses in financial engineering, statistics, quantitative finance, risk management, actuarial science, data science, and mathematics for AI, Financial Data Analytics with Machine Learning, Optimization and Statistics also belongs in the libraries of aspiring and practicing quantitative analysts working in commercial and investment banking. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9781119863373

Contactar al vendedor

Comprar nuevo

EUR 58,11
Gastos de envío gratis
Se envía dentro de Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Chen, Sam; Cheung, Ka Chun; Yam, Phillip
Publicado por Wiley (edition 1), 2024
ISBN 10: 1119863376 ISBN 13: 9781119863373
Nuevo Tapa dura

Librería: BooksRun, Philadelphia, PA, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: New. 1. The item is brand new, never used or read. It's in perfect condition and may include supplements and/or access codes or come shrink-wrapped. Nº de ref. del artículo: 1119863376-9-1

Contactar al vendedor

Comprar nuevo

EUR 58,22
Gastos de envío gratis
Se envía dentro de Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Chen, Sam; Cheung, Ka Chun; Yam, Phillip
Publicado por Wiley (edition 1), 2024
ISBN 10: 1119863376 ISBN 13: 9781119863373
Antiguo o usado Tapa dura

Librería: BooksRun, Philadelphia, PA, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: Very Good. 1. It's a well-cared-for item that has seen limited use. The item may show minor signs of wear. All the text is legible, with all pages included. It may have slight markings and/or highlighting. Nº de ref. del artículo: 1119863376-9-1-NAU

Contactar al vendedor

Comprar usado

EUR 58,22
Gastos de envío gratis
Se envía dentro de Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Chen, Sam; Cheung, Ka Chun; Yam, Phillip
Publicado por Wiley (edition 1), 2024
ISBN 10: 1119863376 ISBN 13: 9781119863373
Antiguo o usado Tapa dura

Librería: BooksRun, Philadelphia, PA, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: Very Good. 1. It's a well-cared-for item that has seen limited use. The item may show minor signs of wear. All the text is legible, with all pages included. It may have slight markings and/or highlighting. Nº de ref. del artículo: 1119863376-8-1

Contactar al vendedor

Comprar usado

EUR 58,38
Gastos de envío gratis
Se envía dentro de Estados Unidos de America

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Yongzhao Chen; Ka Chun Cheung; Kaiser Fan; Phillip
Publicado por John Wiley and Sons, 2024
ISBN 10: 1119863376 ISBN 13: 9781119863373
Nuevo Tapa dura

Librería: INDOO, Avenel, NJ, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Brand New. Nº de ref. del artículo: 9781119863373

Contactar al vendedor

Comprar nuevo

EUR 58,55
Gastos de envío gratis
Se envía dentro de Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Chen, Sam; Cheung, Ka Chun; Yam, Phillip
Publicado por Wiley, 2024
ISBN 10: 1119863376 ISBN 13: 9781119863373
Nuevo Tapa dura

Librería: Books Puddle, New York, NY, Estados Unidos de America

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 26395313176

Contactar al vendedor

Comprar nuevo

EUR 61,89
EUR 3,40 shipping
Se envía dentro de Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Chen, Sam; Cheung, Ka Chun; Yam, Phillip
Publicado por Wiley, 2024
ISBN 10: 1119863376 ISBN 13: 9781119863373
Nuevo Tapa dura

Librería: Majestic Books, Hounslow, Reino Unido

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 401063879

Contactar al vendedor

Comprar nuevo

EUR 62,11
EUR 7,43 shipping
Se envía de Reino Unido a Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Ka Chun Cheung
Publicado por John Wiley & Sons Inc, New York, 2024
ISBN 10: 1119863376 ISBN 13: 9781119863373
Nuevo Tapa dura

Librería: AussieBookSeller, Truganina, VIC, Australia

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: new. Hardcover. An essential introduction to data analytics and Machine Learning techniques in the business sector In Financial Data Analytics with Machine Learning, Optimization and Statistics, a team consisting of a distinguished applied mathematician and statistician, experienced actuarial professionals and working data analysts delivers an expertly balanced combination of traditional financial statistics, effective machine learning tools, and mathematics. The book focuses on contemporary techniques used for data analytics in the financial sector and the insurance industry with an emphasis on mathematical understanding and statistical principles and connects them with common and practical financial problems. Each chapter is equipped with derivations and proofsespecially of key resultsand includes several realistic examples which stem from common financial contexts. The computer algorithms in the book are implemented using Python and R, two of the most widely used programming languages for applied science and in academia and industry, so that readers can implement the relevant models and use the programs themselves. This book can help readers become well-equipped with the following skills: To evaluate financial and insurance data quality, and use the distilled knowledge obtained from the data after applying data analytic tools to make timely financial decisionsTo apply effective data dimension reduction tools to enhance supervised learningTo describe and select suitable data analytic tools as introduced above for a given dataset depending upon classification or regression prediction purpose The book covers the competencies tested by several professional examinations, such as the Predictive Analytics Exam offered by the Society of Actuaries, and the Institute and Faculty of Actuaries' Actuarial Statistics Exam. Besides being an indispensable resource for senior undergraduate and graduate students taking courses in financial engineering, statistics, quantitative finance, risk management, actuarial science, data science, and mathematics for AI, Financial Data Analytics with Machine Learning, Optimization and Statistics also belongs in the libraries of aspiring and practicing quantitative analysts working in commercial and investment banking. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Nº de ref. del artículo: 9781119863373

Contactar al vendedor

Comprar nuevo

EUR 64,03
EUR 31,49 shipping
Se envía de Australia a Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Existen otras 10 copia(s) de este libro

Ver todos los resultados de su búsqueda