Librería:
Kennys Bookstore, Olney, MD, Estados Unidos de America
Calificación del vendedor: 5 de 5 estrellas
Vendedor de AbeBooks desde 9 de octubre de 2009
2016. Paperback. . . . . . Books ship from the US and Ireland. N° de ref. del artículo V9783662507063
This book contains the extended papers presented at the 3rd Workshop on Supervised and Unsupervised Ensemble Methods
and their Applications (SUEMA) that was held in conjunction with the European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD 2010, Barcelona, Catalonia, Spain).
As its two predecessors, its main theme was ensembles of supervised and unsupervised algorithms – advanced machine
learning and data mining technique. Unlike a single classification or clustering algorithm, an ensemble is a group
of algorithms, each of which first independently solves the task at hand by assigning a class or cluster label
(voting) to instances in a dataset and after that all votes are combined together to produce the final class or
cluster membership. As a result, ensembles often outperform best single algorithms in many real-world problems.
This book consists of 14 chapters, each of which can be read independently of the others. In addition to two
previous SUEMA editions, also published by Springer, many chapters in the current book include pseudo code and/or
programming code of the algorithms described in them. This was done in order to facilitate ensemble adoption in
practice and to help to both researchers and engineers developing ensemble applications.
De la contraportada:
This book contains the extended papers presented at the 3rd Workshop on Supervised and Unsupervised Ensemble Methods
and their Applications (SUEMA) that was held in conjunction with the European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD 2010, Barcelona, Catalonia, Spain).
As its two predecessors, its main theme was ensembles of supervised and unsupervised algorithms advanced machine
learning and data mining technique. Unlike a single classification or clustering algorithm, an ensemble is a group
of algorithms, each of which first independently solves the task at hand by assigning a class or cluster label
(voting) to instances in a dataset and after that all votes are combined together to produce the final class or
cluster membership. As a result, ensembles often outperform best single algorithms in many real-world problems.
This book consists of 14 chapters, each of which can be read independently of the others. In addition to two
previous SUEMA editions, also published by Springer, many chapters in the current book include pseudo code and/or
programming code of the algorithms described in them. This was done in order to facilitate ensemble adoption in
practice and to help to both researchers and engineers developing ensemble applications.
Título: Ensembles in Machine Learning Applications
Editorial: Springer
Año de publicación: 2016
Encuadernación: Encuadernación de tapa blanda
Condición: New
Librería: moluna, Greven, Alemania
Condición: New. Nº de ref. del artículo: 449137411
Cantidad disponible: Más de 20 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar3113020315660
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 27440470-n
Cantidad disponible: Más de 20 disponibles
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
Paperback. Condición: new. Paperback. This book contains the extended papers presented at the 3rd Workshop on Supervised and Unsupervised Ensemble Methods and their Applications (SUEMA) that was held in conjunction with the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD 2010, Barcelona, Catalonia, Spain). As its two predecessors, its main theme was ensembles of supervised and unsupervised algorithms advanced machinelearning and data mining technique. Unlike a single classification or clustering algorithm, an ensemble is a groupof algorithms, each of which first independently solves the task at hand by assigning a class or cluster label (voting) to instances in a dataset and after that all votes are combined together to produce the final class or cluster membership. As a result, ensembles often outperform best single algorithms in many real-world problems. This book consists of 14 chapters, each of which can be read independently of the others. In addition to two previous SUEMA editions, also published by Springer, many chapters in the current book include pseudo code and/or programming code of the algorithms described in them. This was done in order to facilitate ensemble adoption in practice and to help to both researchers and engineers developing ensemble applications. This book contains the extended papers presented at the 3rd Workshop on Supervised and Unsupervised Ensemble Methods and their Applications (SUEMA) that was held in conjunction with the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD 2010, Barcelona, Catalonia, Spain). Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9783662507063
Cantidad disponible: 1 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -This book contains the extended papers presented at the 3rd Workshop on Supervised and Unsupervised Ensemble Methodsand their Applications (SUEMA) that was held in conjunction with the European Conference on Machine Learning andPrinciples and Practice of Knowledge Discovery in Databases (ECML/PKDD 2010, Barcelona, Catalonia, Spain).As its two predecessors, its main theme was ensembles of supervised and unsupervised algorithms ¿ advanced machinelearning and data mining technique. Unlike a single classification or clustering algorithm, an ensemble is a groupof algorithms, each of which first independently solves the task at hand by assigning a class or cluster label(voting) to instances in a dataset and after that all votes are combined together to produce the final class orcluster membership. As a result, ensembles often outperform best single algorithms in many real-world problems.This book consists of 14 chapters, each of which can be read independently of the others. In addition to twoprevious SUEMA editions, also published by Springer, many chapters in the current book include pseudo code and/orprogramming code of the algorithms described in them. This was done in order to facilitate ensemble adoption inpractice and to help to both researchers and engineers developing ensemble applications.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 276 pp. Englisch. Nº de ref. del artículo: 9783662507063
Cantidad disponible: 1 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book contains the extended papers presented at the 3rd Workshop on Supervised and Unsupervised Ensemble Methods and their Applications (SUEMA) that was held in conjunction with the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD 2010, Barcelona, Catalonia, Spain). As its two predecessors, its main theme was ensembles of supervised and unsupervised algorithms - advanced machinelearning and data mining technique. Unlike a single classification or clustering algorithm, an ensemble is a groupof algorithms, each of which first independently solves the task at hand by assigning a class or cluster label (voting) to instances in a dataset and after that all votes are combined together to produce the final class or cluster membership. As a result, ensembles often outperform best single algorithms in many real-world problems. This book consists of 14 chapters, each of which can be read independently of the others. In addition to two previous SUEMA editions, also published by Springer, many chapters in the current book include pseudo code and/or programming code of the algorithms described in them. This was done in order to facilitate ensemble adoption in practice and to help to both researchers and engineers developing ensemble applications. Nº de ref. del artículo: 9783662507063
Cantidad disponible: 1 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book contains the extended papers presented at the 3rd Workshop on Supervised and Unsupervised Ensemble Methods and their Applications (SUEMA) that was held in conjunction with the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD 2010, Barcelona, Catalonia, Spain). As its two predecessors, its main theme was ensembles of supervised and unsupervised algorithms - advanced machinelearning and data mining technique. Unlike a single classification or clustering algorithm, an ensemble is a groupof algorithms, each of which first independently solves the task at hand by assigning a class or cluster label (voting) to instances in a dataset and after that all votes are combined together to produce the final class or cluster membership. As a result, ensembles often outperform best single algorithms in many real-world problems. This book consists of 14 chapters, each of which can be read independently of the others. In addition to two previous SUEMA editions, also published by Springer, many chapters in the current book include pseudo code and/or programming code of the algorithms described in them. This was done in order to facilitate ensemble adoption in practice and to help to both researchers and engineers developing ensemble applications. 276 pp. Englisch. Nº de ref. del artículo: 9783662507063
Cantidad disponible: 2 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 27440470-n
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783662507063_new
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 27440470
Cantidad disponible: Más de 20 disponibles