Ensembles in Machine Learning Applications

. Ed(s): Okun, Oleg; Valentini, Giorgio; Re, Matteo

ISBN 10: 3642229093 ISBN 13: 9783642229091
Editorial: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, 2011
Nuevos Encuadernación de tapa dura

Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Vendedor de AbeBooks desde 27 de febrero de 2001

Este artículo en concreto ya no está disponible.

Descripción

Descripción:

This book collects papers from the 3rd Workshop on Supervised and Unsupervised Ensemble Methods and their Applications (SUEMA), held as part of the 2010 European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases. Editor(s): Okun, Oleg; Valentini, Giorgio; Re, Matteo. Series: Studies in Computational Intelligence. Num Pages: 252 pages, biography. BIC Classification: UYQ. Category: (P) Professional & Vocational. Dimension: 235 x 155 x 20. Weight in Grams: 622. . 2011. Hardback. . . . . N° de ref. del artículo V9783642229091

Denunciar este artículo

Sinopsis:

This book contains the extended papers presented at the 3rd Workshop on Supervised and Unsupervised Ensemble Methods
and their Applications (SUEMA) that was held in conjunction with the European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD 2010, Barcelona, Catalonia, Spain).
As its two predecessors, its main theme was ensembles of supervised and unsupervised algorithms - advanced machine
learning and data mining technique. Unlike a single classification or clustering algorithm, an ensemble is a group
of algorithms, each of which first independently solves the task at hand by assigning a class or cluster label
(voting) to instances in a dataset and after that all votes are combined together to produce the final class or
cluster membership. As a result, ensembles often outperform best single algorithms in many real-world problems.
 
This book consists of 14 chapters, each of which can be read independently of the others. In addition to two
previous SUEMA editions, also published by Springer, many chapters in the current book include pseudo code and/or
programming code of the algorithms described in them. This was done in order to facilitate ensemble adoption in
practice and to help to both researchers and engineers developing ensemble applications.

De la contraportada: This book contains the extended papers presented at the 3rd Workshop on Supervised and Unsupervised Ensemble Methods
and their Applications (SUEMA) that was held in conjunction with the European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD 2010, Barcelona, Catalonia, Spain).
As its two predecessors, its main theme was ensembles of supervised and unsupervised algorithms advanced machine
learning and data mining technique. Unlike a single classification or clustering algorithm, an ensemble is a group
of algorithms, each of which first independently solves the task at hand by assigning a class or cluster label
(voting) to instances in a dataset and after that all votes are combined together to produce the final class or
cluster membership. As a result, ensembles often outperform best single algorithms in many real-world problems.

This book consists of 14 chapters, each of which can be read independently of the others. In addition to two
previous SUEMA editions, also published by Springer, many chapters in the current book include pseudo code and/or
programming code of the algorithms described in them. This was done in order to facilitate ensemble adoption in
practice and to help to both researchers and engineers developing ensemble applications.

"Sobre este título" puede pertenecer a otra edición de este libro.

Detalles bibliográficos

Título: Ensembles in Machine Learning Applications
Editorial: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Año de publicación: 2011
Encuadernación: Encuadernación de tapa dura
Condición: New

Los mejores resultados en AbeBooks

Imagen del vendedor

Okun, Oleg [Hrsg.], Giorgio [Hrsg.] Valentini and Matteo [Hrsg.] Re:
Publicado por Berlin ; Heidelberg : Springer, 2011
ISBN 10: 3642229093 ISBN 13: 9783642229091
Antiguo o usado Tapa dura

Librería: Druckwaren Antiquariat, Salzwedel, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

OPp., gebundene Ausgabe. Condición: Befriedigend. XX, 252 S.: Ill., graph. Darst. ; 24 cm, Einband berieben. ISBN: 9783642229091 Sprache: Englisch Gewicht in Gramm: 680. Nº de ref. del artículo: 27128

Contactar al vendedor

Comprar usado

EUR 22,00
Convertir moneda
Gastos de envío: EUR 12,00
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Unbekannt
Publicado por Springer Berlin Heidelberg, 2011
ISBN 10: 3642229093 ISBN 13: 9783642229091
Antiguo o usado Tapa dura

Librería: Buchpark, Trebbin, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher. Nº de ref. del artículo: 10893917/12

Contactar al vendedor

Comprar usado

EUR 23,50
Convertir moneda
Gastos de envío: EUR 105,00
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Okun, Oleg|Valentini, Giorgio|Re, Matteo
Publicado por Springer Berlin Heidelberg, 2011
ISBN 10: 3642229093 ISBN 13: 9783642229091
Nuevo Tapa dura

Librería: moluna, Greven, Alemania

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Gebunden. Condición: New. Nº de ref. del artículo: 5053043

Contactar al vendedor

Comprar nuevo

EUR 92,27
Convertir moneda
Gastos de envío: EUR 48,99
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Publicado por Springer, 2011
ISBN 10: 3642229093 ISBN 13: 9783642229091
Nuevo Tapa dura

Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: ABLIING23Mar3113020221199

Contactar al vendedor

Comprar nuevo

EUR 103,37
Convertir moneda
Gastos de envío: EUR 3,44
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Okun, Oleg (EDT); Valentini, Giorgio (EDT); Re, Matteo (EDT)
Publicado por Springer, 2011
ISBN 10: 3642229093 ISBN 13: 9783642229091
Nuevo Tapa dura

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 13860647-n

Contactar al vendedor

Comprar nuevo

EUR 104,52
Convertir moneda
Gastos de envío: EUR 2,28
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 15 disponibles

Añadir al carrito

Imagen de archivo

Oleg Okun
ISBN 10: 3642229093 ISBN 13: 9783642229091
Nuevo Tapa dura

Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: new. Hardcover. This book contains the extended papers presented at the 3rd Workshop on Supervised and Unsupervised Ensemble Methods and their Applications (SUEMA) that was held in conjunction with the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD 2010, Barcelona, Catalonia, Spain). As its two predecessors, its main theme was ensembles of supervised and unsupervised algorithms advanced machinelearning and data mining technique. Unlike a single classification or clustering algorithm, an ensemble is a groupof algorithms, each of which first independently solves the task at hand by assigning a class or cluster label (voting) to instances in a dataset and after that all votes are combined together to produce the final class or cluster membership. As a result, ensembles often outperform best single algorithms in many real-world problems. This book consists of 14 chapters, each of which can be read independently of the others. In addition to two previous SUEMA editions, also published by Springer, many chapters in the current book include pseudo code and/or programming code of the algorithms described in them. This was done in order to facilitate ensemble adoption in practice and to help to both researchers and engineers developing ensemble applications. This book contains the extended papers presented at the 3rd Workshop on Supervised and Unsupervised Ensemble Methods and their Applications (SUEMA) that was held in conjunction with the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD 2010, Barcelona, Catalonia, Spain). Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9783642229091

Contactar al vendedor

Comprar nuevo

EUR 106,88
Convertir moneda
Gastos de envío: GRATIS
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Oleg Okun
ISBN 10: 3642229093 ISBN 13: 9783642229091
Nuevo Tapa dura

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Neuware -This book contains the extended papers presented at the 3rd Workshop on Supervised and Unsupervised Ensemble Methodsand their Applications (SUEMA) that was held in conjunction with the European Conference on Machine Learning andPrinciples and Practice of Knowledge Discovery in Databases (ECML/PKDD 2010, Barcelona, Catalonia, Spain).As its two predecessors, its main theme was ensembles of supervised and unsupervised algorithms ¿ advanced machinelearning and data mining technique. Unlike a single classification or clustering algorithm, an ensemble is a groupof algorithms, each of which first independently solves the task at hand by assigning a class or cluster label(voting) to instances in a dataset and after that all votes are combined together to produce the final class orcluster membership. As a result, ensembles often outperform best single algorithms in many real-world problems.This book consists of 14 chapters, each of which can be read independently of the others. In addition to twoprevious SUEMA editions, also published by Springer, many chapters in the current book include pseudo code and/orprogramming code of the algorithms described in them. This was done in order to facilitate ensemble adoption inpractice and to help to both researchers and engineers developing ensemble applications.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 272 pp. Englisch. Nº de ref. del artículo: 9783642229091

Contactar al vendedor

Comprar nuevo

EUR 106,99
Convertir moneda
Gastos de envío: EUR 60,00
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Oleg Okun
Publicado por Springer Berlin Heidelberg, 2011
ISBN 10: 3642229093 ISBN 13: 9783642229091
Nuevo Tapa dura

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book contains the extended papers presented at the 3rd Workshop on Supervised and Unsupervised Ensemble Methods and their Applications (SUEMA) that was held in conjunction with the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD 2010, Barcelona, Catalonia, Spain). As its two predecessors, its main theme was ensembles of supervised and unsupervised algorithms - advanced machinelearning and data mining technique. Unlike a single classification or clustering algorithm, an ensemble is a groupof algorithms, each of which first independently solves the task at hand by assigning a class or cluster label (voting) to instances in a dataset and after that all votes are combined together to produce the final class or cluster membership. As a result, ensembles often outperform best single algorithms in many real-world problems. This book consists of 14 chapters, each of which can be read independently of the others. In addition to two previous SUEMA editions, also published by Springer, many chapters in the current book include pseudo code and/or programming code of the algorithms described in them. This was done in order to facilitate ensemble adoption in practice and to help to both researchers and engineers developing ensemble applications. Nº de ref. del artículo: 9783642229091

Contactar al vendedor

Comprar nuevo

EUR 106,99
Convertir moneda
Gastos de envío: EUR 63,13
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Oleg Okun
ISBN 10: 3642229093 ISBN 13: 9783642229091
Nuevo Tapa dura
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book contains the extended papers presented at the 3rd Workshop on Supervised and Unsupervised Ensemble Methods and their Applications (SUEMA) that was held in conjunction with the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD 2010, Barcelona, Catalonia, Spain). As its two predecessors, its main theme was ensembles of supervised and unsupervised algorithms - advanced machinelearning and data mining technique. Unlike a single classification or clustering algorithm, an ensemble is a groupof algorithms, each of which first independently solves the task at hand by assigning a class or cluster label (voting) to instances in a dataset and after that all votes are combined together to produce the final class or cluster membership. As a result, ensembles often outperform best single algorithms in many real-world problems. This book consists of 14 chapters, each of which can be read independently of the others. In addition to two previous SUEMA editions, also published by Springer, many chapters in the current book include pseudo code and/or programming code of the algorithms described in them. This was done in order to facilitate ensemble adoption in practice and to help to both researchers and engineers developing ensemble applications. 272 pp. Englisch. Nº de ref. del artículo: 9783642229091

Contactar al vendedor

Comprar nuevo

EUR 106,99
Convertir moneda
Gastos de envío: EUR 23,00
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Publicado por Springer, 2011
ISBN 10: 3642229093 ISBN 13: 9783642229091
Nuevo Tapa dura

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9783642229091_new

Contactar al vendedor

Comprar nuevo

EUR 111,44
Convertir moneda
Gastos de envío: EUR 13,77
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Existen otras 4 copia(s) de este libro

Ver todos los resultados de su búsqueda