Librería:
Biblios, Frankfurt am main, HESSE, Alemania
Calificación del vendedor: 4 de 5 estrellas
Vendedor de AbeBooks desde 10 de septiembre de 2024
pp. 576. N° de ref. del artículo 18378819
OSHA (29 CFR 1910.119) has recognized AIChE/DIERS two-phase flow publications as examples of "good engineering practice" for process safety management of highly hazardous materials. The prediction of when two-phase flow venting will occur, and the applicability of various sizing methods for two-phase vapor-liquid flashing flow, is of particular interest when designing emergency relief systems to handle runaway reactions. This comprehensive sourcebook brings together a wealth of information on methods that can be used to safely size emergency relief systems for two-phase vapor-liquid flow for flashing or frozen, viscous or nonviscous fluids. Design methodologies are illustrated by selected sample problems. Written by industrial experts in the safety field, this book will be invaluable to those charged with operating, designing, or managing today's and tomorrow's chemical process industry facilities.
Acerca del autor:
H. G. Fisher is the author of Emergency Relief System Design Using DIERS Technology: The Design Institute for Emergency Relief Systems (DIERS) Project Manual, published by Wiley.
H. S. Forrest is the author of Emergency Relief System Design Using DIERS Technology: The Design Institute for Emergency Relief Systems (DIERS) Project Manual, published by Wiley.
Stanley S. Grossel is the author of Emergency Relief System Design Using DIERS Technology: The Design Institute for Emergency Relief Systems (DIERS) Project Manual, published by Wiley.
J. E. Huff is the author of Emergency Relief System Design Using DIERS Technology: The Design Institute for Emergency Relief Systems (DIERS) Project Manual, published by Wiley.
A. R. Muller is the author of Emergency Relief System Design Using DIERS Technology: The Design Institute for Emergency Relief Systems (DIERS) Project Manual, published by Wiley.
J. A. Noronha is the author of Emergency Relief System Design Using DIERS Technology: The Design Institute for Emergency Relief Systems (DIERS) Project Manual, published by Wiley.
D. A. Shaw is the author of Emergency Relief System Design Using DIERS Technology: The Design Institute for Emergency Relief Systems (DIERS) Project Manual, published by Wiley.
B. J. Tilley is the author of Emergency Relief System Design Using DIERS Technology: The Design Institute for Emergency Relief Systems (DIERS) Project Manual, published by Wiley.
Título: Emergency Relief System Design Using DIERS ...
Editorial: John Wiley & Sons
Año de publicación: 1993
Encuadernación: Encuadernación de tapa dura
Condición: New
Librería: HPB-Red, Dallas, TX, Estados Unidos de America
hardcover. Condición: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Nº de ref. del artículo: S_371542844
Cantidad disponible: 1 disponibles
Librería: BennettBooksLtd, San Diego, NV, Estados Unidos de America
hardcover. Condición: New. In shrink wrap. Looks like an interesting title! Nº de ref. del artículo: Q-0816905681
Cantidad disponible: 1 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 3426600-n
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
HRD. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: FW-9780816905683
Cantidad disponible: 15 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9780816905683_new
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 3426600-n
Cantidad disponible: Más de 20 disponibles
Librería: moluna, Greven, Alemania
Gebunden. Condición: New. Über den AutorH. G. Fisher is the author of Emergency Relief System Design Using DIERS Technology: The Design Institute for Emergency Relief Systems (DIERS) Project Manual, published by Wiley. H. S. Forres. Nº de ref. del artículo: 447087899
Cantidad disponible: Más de 20 disponibles
Librería: CitiRetail, Stevenage, Reino Unido
Hardcover. Condición: new. Hardcover. OSHA (29 CFR 1910.119) has recognized AIChE/DIERS two-phase flow publications as examples of "good engineering practice" for process safety management of highly hazardous materials. The prediction of when two-phase flow venting will occur, and the applicability of various sizing methods for two-phase vapor-liquid flashing flow, is of particular interest when designing emergency relief systems to handle runaway reactions. This comprehensive sourcebook brings together a wealth of information on methods that can be used to safely size emergency relief systems for two-phase vapor-liquid flow for flashing or frozen, viscous or nonviscous fluids. Design methodologies are illustrated by selected sample problems. Written by industrial experts in the safety field, this book will be invaluable to those charged with operating, designing, or managing today's and tomorrow's chemical process industry facilities. This comprehensive sourcebook brings together a wealth of information on methods that can be used to safely size emergency relief systems for two-phase vapor-liquid flow for flashing or frozen, viscous or nonviscous fluids. This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Nº de ref. del artículo: 9780816905683
Cantidad disponible: 1 disponibles
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
Hardcover. Condición: new. Hardcover. OSHA (29 CFR 1910.119) has recognized AIChE/DIERS two-phase flow publications as examples of "good engineering practice" for process safety management of highly hazardous materials. The prediction of when two-phase flow venting will occur, and the applicability of various sizing methods for two-phase vapor-liquid flashing flow, is of particular interest when designing emergency relief systems to handle runaway reactions. This comprehensive sourcebook brings together a wealth of information on methods that can be used to safely size emergency relief systems for two-phase vapor-liquid flow for flashing or frozen, viscous or nonviscous fluids. Design methodologies are illustrated by selected sample problems. Written by industrial experts in the safety field, this book will be invaluable to those charged with operating, designing, or managing today's and tomorrow's chemical process industry facilities. This comprehensive sourcebook brings together a wealth of information on methods that can be used to safely size emergency relief systems for two-phase vapor-liquid flow for flashing or frozen, viscous or nonviscous fluids. This item is printed on demand. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9780816905683
Cantidad disponible: 1 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Buch. Condición: Neu. Neuware - OSHA (29 CFR 1910.119) has recognized AIChE/DIERS two-phase flow publications as examples of 'good engineering practice' for process safety management of highly hazardous materials. The prediction of when two-phase flow venting will occur, and the applicability of various sizing methods for two-phase vapor-liquid flashing flow, is of particular interest when designing emergency relief systems to handle runaway reactions. This comprehensive sourcebook brings together a wealth of information on methods that can be used to safely size emergency relief systems for two-phase vapor-liquid flow for flashing or frozen, viscous or nonviscous fluids. Design methodologies are illustrated by selected sample problems. Written by industrial experts in the safety field, this book will be invaluable to those charged with operating, designing, or managing today's and tomorrow's chemical process industry facilities. Nº de ref. del artículo: 9780816905683
Cantidad disponible: 2 disponibles