Electron Spin Resonance Vol 10a
Symons, M. C. R.
Vendido por moluna, Greven, Alemania
Vendedor de AbeBooks desde 9 de julio de 2020
Nuevos - Encuadernación de tapa dura
Condición: Nuevo
Cantidad disponible: Más de 20 disponibles
Añadir al carritoVendido por moluna, Greven, Alemania
Vendedor de AbeBooks desde 9 de julio de 2020
Condición: Nuevo
Cantidad disponible: Más de 20 disponibles
Añadir al carritoReflecting the growing volume of published work in this field, researchers will find this book an invaluable source of information on current methods and applications.KlappentextrnrnReflecting the growing volume of published work in this fie.
N° de ref. del artículo 595095851
Reflecting the growing volume of published work in this field, researchers will find this book an invaluable source of information on current methods and applications.
CHAPTER 1 Transition Metal Ions By A. Bencini and C. Zanchini, 1,
CHAPTER 2 Laser Maqnetic Resonance Spectroscopy By D.K. Russell, 64,
CHAPTER 3 Electron Spin Resonance of Transition Metal Ions in Zeolites By L. Kevan, 99,
CHAPTER 4 Metalloproteins By G.R. Hanson, 129,
CHAPTER 5 EPR Imaging By S.S. Eaton and G.R. Eaton, 176,
CHAPTER 6 Inorganic and organometallic Radicals By M.C.R. Symons, 191,
Transition Metal Ions
BY ALESSANDRO BENCINI AND CLAUDIA ZANCHINI
1 Introduction
After some years the task of preparing the Specialist Periodical Reports on Transition Metal Ions returns back to Firenze. It is with great pleasure that we are now starting to prepare this issue.
The basic format of the chapter will be left unchanged, but in order to cover some recent applications of the e.s.r. spectroscopy, we add some new paragraphs. In the Extended Systems section we will review application of e.s.r. spectroscopy to compounds which contain transition metal ions in three and lower dimensional magnetic lattices. In the Semiconductors section we will resume the main information that e.s.r. spectroscopy can give in semiconducting solids containing transition metal ions either as main constituents or as impurities. In another section, called Superconductors, we will try to resume the main applications of e.s.r. in a research field which is largely attracting the attention of many researchers after the discovery of high Tc superconductors formed by copper oxides.
Due to the extremely large number of papers reporting the application of e.s.r. in many fields of physics and chemistry we cannot be exhaustive, but we will mention here the most relevant applications. Particular emphasis will be given to single crystal measurements and to works in which the physical properties of the compounds are investigated with the largest number of techniques. Papers written in languages different from English, in general, will not be referred, since we, like many other researchers, have a lot of difficulties in moving through the babel of human languages.
Review articles covering particular aspects of the applications of the e.s.r. spectroscopy will be reported in each section.
Without any doubt some overlap will occur with other chapters of this book, but this already occurred in the past and did not cause any damage to the reader. This time, perhaps, the reader will be much more involved in understanding our English, which, we hope, will not be too italian-like.
Two books dealing with e.s.r. spectroscopy in exchange coupled systems appeared. The first oneby Yablokov, Voronkova and Mosina, in russian, is entitled "Paramagnetic Resonance of Exchange Clusters"; the second one by Bencini and Gatteschi , entitled "Electron Paramagnetic Resonance of Exchange Coupled Systems", is intended to collect in one place as much information as possible on the use of e.s.r. spectroscopy in the analysis of systems in which two or more spins are magnetically coupled.
2 General
The conventional technique of detection of an e.s.r signal makes use of the modulation of the magnetic field. To achieve the optimum signal one must then use a modulation amplitude comparable to the linewidth, which leads, however, to lineshape distortion or to a decrease in the signal to noise ratio especially for broad resonances. Alternative methods to field modulation in e.s.r. spectroscopy have been reviewed by Hyde, Sczaniecki and Froncisz. In particular the use of Loop Gap Resonators and the Electron Paramagnetic Rotary Resonance is emphasized. This latter technique uses the resonance that occurs when the difference of two incident microwave frequencies matches the precession frequency of the rotating frame, in the Bloch formalism.
In the field of pulsed e.s.r. a detection technique based on the measurement of the longitudinal magnetization, Mz, is described (LOD-PESR). This technique can be used to measure the rapid changes of Mz during short microwave pulses of duration tp ≤ T1, T2, and flip angles β ≤ π. Using this technique, data acquisition of the echo envelope modulation can be initiated after much shorter time than in a conventional electron spin echo experiment.
Other experiments using pulsed techniques can be found in references 5,6.
The double modulation electron spin resonance spectroscopy (DOMESR) has been analyzed both theoretically and experimentally.
Apparatus for high pressure measurements and for low temperature Q-band measurements have been described.
A review on the future developments of the e.s.r. instrumentation has appeared.
The measurement of e.s.r. spectra of ions having large zero field splitting of the ground state is attracting the attention of researchers. For this purpose submillimeter wave e. s. r. in high magnetic fields and ODMR techniques should be applied. On this subject we cite the measurements on CsFeC13 at 4.2 K using FIR laser at 103.6 cm-1 and 84.2 cm-l in pulsed magnetic fields up to 17 T, and the measurement of the spin hamiltonian parameters of the triplet luminescent state of a Ba3(VO4)2 crystal. Spectrometers working with frequencies up to 16 cm-l and with magnetic fields up to 20 T have been described in references 13,14.
An apparatus which can be derived from a conventional e.s.r. spectrometer has been used to monitoring the superconducting transition in high Tc oxides. The experiment consists in the measure of the imbalance of the bridge when the sample is loaded in the cavity arm of a four arm microwave bridge X-band e.s.r. spectrometer.
The application of e. s. r. spectroscopy in microscopy, dating and dosimetry is reviewed in reference 16. In particular the use of e. s. r. microscopy and imaging are evidenced. The construction of a portable e.s.r. spectrometer to be used for microscopy, dating and dosimetry is described.
In the field of the analysis of defect states in semiconductors some applications of photo-e.s.r. techniques and the effects of non-resonant absorption due to free carriers has been reviewed. The two techniques have been found useful in the identification of the nature of the defects in semiconductors and in the determination of the free carrier concentration.
Pilbrow reviewed the use and possibilities of the electron paramagnetic resonance spectroscopy of transition metal ions.
Theory. The calculation of the spin hamiltonian parameters from molecular orbital functions obtained from some SCF procedure is certainly the best way to check the quality of the function describing the ground state of the molecule. Among the theoretical models available up to date for computing the electronic structure of open shell transition metal complexes the MS-Xa model still receives much attention. Ruiz-Lopez and Natoli have computed optical excitations, g values, and XANES in vanadyl porphyrins. Here the principal g values are computed using the standard perturbation solution for a D4h d1 system and taking the covalency parameters from the ground state Xa-wavefunction. Barriuso, Aramburu and Moreno computed the electronic structure of a Ni+ impurity into LiF. The calculations give a reasonable correlation between the Ni-F bond distance and optical transitions and hyperfine values.
Other molecular orbital methods have been applied to compute the g tensor in ferricytochrome c and azidomyoglobin and the g tensor and the anisotropic part of the hyperfine tensor in vanadyl complexes.
The use of approximate d orbitals of double zeta quality allows one to compute the Racah parameters and to be used in Ligand or Crystal Field calculations. Although some criticism appeared on the choice of the basis function the method has been applied with some success, for example, to iron(II).
Ligand Field calculations have been also applied to the e.s.r. spin hamiltonian parameters in a number of complexes.
Some troubles seem to arise among Chinese researchers on the applicability of e.s.r. techniques to the determination of crystal structure parameters in particular from zero field splitting parameters and from hyperfine and superhyperfine coupling constants. It is our opinion that, apart from the accuracy with which these parameters are measured, a serious lack in obtaining precise measurements of the crystalline parameters is the theoretical model (s) one has to use to establish the required correlation. Ligand Field models, either including vibronic effects, are always overparameterized, except for cubic site symmetries, and Molecular Orbital calculations, at any level of sophistication, often fail to give accurate descriptions of the radial function of the ground state needed to evaluate hyperfine terms. As a matter of fact, however, e.s.r. spectroscopy is invaluable in individuating impurities or defect sites in solids and the correlation between geometry of the coordination site and e.s.r. parameters must be used to guess, with all its uncertainty, the local site symmetry of the sites, having in the mind that X-ray absorption or EXAFS spectroscopy cannot be used in these cases. Of course much more information should be obtained in all the cases in which endor spectra can also be measured.
Analysis of the Spectra and Computing. Misra has developed a least-squares-fitting procedure to analyze single crystal e.s.r. and endor spectra with the spin hamiltonian
[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] (1)
allowing for the non coincidence of the g, D, Ai, gi, and Pi tensors. The procedure is based on a second order calculation of the transition energies, AEi, and minimisation of the function
[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] (2)
where the summation runs over all the observed (e.s.r., endor) lines and δi is the effective weight factor for the ith line position, and it is related to the uncertainty in the measure of the static magnetic field and position of the crystal with respect to the field. This procedure is a generalization of a previously reported one and based on first order calculations. As an example of application, the spectra of VO2+ doped K2C2O4•H2O were fitted using the spin hamiltonian parameters obtained from the first order formulae as starting parameter values. Unfortunately no evaluation of the standard deviations of the measured spin hamiltonian parameters was done, thus making difficult any meaningful test.
Rudowicz developed the expressions which relate the g and D tensors for s = 2 ions at sites of various symmetries to the spin-orbit coupling constant, spin-spin coupling constant, and the energy level splitting of the 5v ground multiplet. Applications to Fel-xAxF2 (A = Mn, Zn, Mg) and FeCl2•2H2O have been discussed.
Expressions for the position of forbidden hyperfine lines, ΔM=±1, Δm=±1, where M and m are the electron and nuclear azimuthal spin quantum numbers, have been developed to third-order in perturbation theory.
A high order perturbation formula has been worked out for computing the g values of d8 ions in trigonal symmetry and the spin hamiltonian parameters of d3 ions possessing C2 symmetry.
Polycrystalline powder and solution spectra are still more easy to handle than single crystal ones and a number of papers deal with the development of computer programs to simulate them in order to extract the principal values of the spin hamiltonian parameters.
E.s.r. and endor powder spectra for S = 1/2 spin systems including hyperfine and superhyperfine coupling from nitrogen nuclei have been considered by Greiner and Baumgarten.
A fitting procedure of polycrystalline powder spectra which uses a least-squares method has been developed by She, Chen and Yu and applied to the fitting of copper(II) spectra with and without hyperfine splitting. The parameters used in the calculations are the principal values of the g and A tensors and the linewidths. The methods can use energy levels computed using perturbation solutions of the spin hamiltonian or complete matrix diagonalization. Also in this case, however, no estimate of the standard deviations on the parameters neither of the correlation between them has been reported. In particular it is this latter quantity which gives any physical reality to the best fitting parameters.
Multifrequency e.s.r. spectra of solutions of copper(II) complexes have been studied with the purpose of minimizing the uncertainty in the determination of motional and magnetic parameters. Always for solutions, an analysis of the effect of the temperature on the e. s. r. spectra of hexaaquoions of several transition metal ions has been reported.
Phase Transitions. -The nature of the phase transitions in a series of dipropionates of formulae Ca2M(C2H5COO)6 M = Pb, Ba, Sr have been investigated using single crystal measurements on Mn2+ doped samples. In particular Ca2Pb(C2H5COO)6 undergoes a paraelectric-ferroelectric second order phase transition around Tc1 = 343 K and a first order phase transition around Tc2 180 K. The e.s.r. spectra revealed that the structure is still tetragonal both above and below Tc2. In the ferroelectric phase below Tel the critical behaviour was followed by measuring the temperature dependence of the angular splitting of the maximum field along the z axis of one manganese ion. The high field resonance separates into two maxima below Tel, and the variation with temperature of the high field resonance follows the equation
Θ = Θ0(Tc1-T)β (3)
where Θ0 = 1.148° and β = 0.51(3). Θ being the angle with the c direction. The ordering of the propionate molecules around the manganese ion in the series of propionates is discussed.
The interaction between the paramagnetic probe and the lattice has been studied, within the Crystal Field theory, for chromium(III) doped RbCdF3 below the phase transition.
The phase transition in the (Cd,Mn)S, a semimagnetic semiconductor, was also studied. In this and in the (Zn,Mn)S system a transition from a paramagnetic state into a spin-glass-like phase, determined by the antiferromagnetic interaction between the manganese(II) ions, occurs at a Neel temperature which depends on the manganese(II) concentration, TN(xMn). The temperature dependence of the linewidth of the observed signal was found to follow the law
B(T) = A[T-TN(xMn)]-1 (4)
for small differences, with l/A = 0.60(4) K-1T-1. An equation showing the variation of TN with xMn is also given.
Studies of the phase transitions in K2(Cr,Cd)F4, KSc(MoO4)2, (Zn, Mn)TiF6•6H2O, (NH4)2Cd2(SO4)3, and Ba(Ti,Fe)O3 were also reported.
Jahn-Teller Effect. The theory of the Jahn-Teller interactions in metallocenes has been developed to include orthorhombic Ligand Field components and applied to the analysis of cobaltocene, chromocene and ferricenium cation.
The e.s.r. spectra of copper(II) doped Cd(NH4)(SO4)2•6H2O have been studied both on single crystals and on polycrystalline powder down to 4.2 K. The principal values of the g and A tensors were found to be temperature dependent while the principal directions of the two tensors remained parallel within experimental error. The temperature dependence of the spectra was attributed to a pseudo-Jahn-Teller distortion experienced by the Cu(H2O)62+ chromophore and rationalized using a model with three adiabatic potential valleys. The relative ordering of these three valleys arising from the Jahn-Teller distortion was found to be similar to that observed in the Tutton salt but with the higher energy distortion at significantly smaller energy.
Resonance Raman spectroscopy studies performed on radical cations of nickel(II), copper(II), and iron(III) chloride complexes of octaethyl-and tetraphenyl-porphyrins have been interpreted by a pseudo-Jahn-Teller mixing of the a1u and a2u molecular orbitals (D4h labelling) via the A2g vibrational mode. These results are in agreement with previously reported e.s.r. spectra of a cobalt(II) nitrosyl complex in which the observed hyperfine coupling with both the cobalt nucleus and protons of the saturated ring were rationalized through a a1u/a2u admixture.
Excerpted from Electron Spin Resonance Volume 12B by M.C.R. Symons. Copyright © 1991 The Royal Society of Chemistry. Excerpted by permission of The Royal Society of Chemistry.
All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher.
Excerpts are provided by Dial-A-Book Inc. solely for the personal use of visitors to this web site.
"Sobre este título" puede pertenecer a otra edición de este libro.
Ver la página web de la librería
Informe de revocación/ Modelo de formulario de revocación/
Condiciones Generales de Contratación e informaciones del cliente / Protección de los datos personales
Derecho de revocación para el consumidor
(Se entiende por "consumidor" cualquier persona natural que celebre un negocio jurídico con fines que no puedan atribuirse ni a su actividad comercial ni a su actividad profesional particular.)
Información sobre el derecho de revocación
Derecho de revocación
Tiene derecho a revocar el presente co...
Informe de revocación/ Modelo de formulario de revocación/
Condiciones Generales de Contratación e informaciones del cliente / Protección de los datos personales
Derecho de revocación para el consumidor
(Se entiende por "consumidor" cualquier persona natural que celebre un negocio jurídico con fines que no puedan atribuirse ni a su actividad comercial ni a su actividad profesional particular.)
Información sobre el derecho de revocación
Derecho de revocación
Tiene derecho a revocar el presente contrato dentro de un plazo de un mes sin necesidad de alegar ningún motivo.
El plazo de revocación es de un mes contado a partir del día
en el que usted o una tercera persona designada por usted (que no sea el transportista) tome posesión de las mercancías, siempre que usted haya solicitado una o varias mercancías dentro del marco de un pedido común y este se suministre en conjunto;
en el que usted o una tercera persona designada por usted (que no sea el transportista) tome posesión de la última mercancía, siempre que usted haya solicitado varias mercancías dentro del marco de un pedido común y este se suministre por separado;
en el que usted o una tercera persona designada por usted (que no sea el transportista) tome posesión del último envío parcial o de la última unidad, siempre que usted haya solicitado una mercancía que deba ser suministrada en varios envíos parciales o unidades;
Para ejercer su derecho de revocación, deberá informarnos (Moluna GmbH, Münsterstr. 105, 48268 Greven, número de teléfono: 02571/5 69 89 33, Nº telefax: 02571/5 69 89 30, Dirección de E-Mail: abe@moluna.de) sobre su decisión de revocar este contrato a través de una declaración unívoca (p. ej., una carta enviada por correo postal, un telefax o un correo electrónico). Para ello, puede utilizar el modelo de formulario de revocación adjunto, aunque no es obligatorio.
Para salvaguardar el plazo de revocación es suficiente con el envío de la notificación sobre el uso del derecho de revocación antes de que expire el plazo de revocación.
Consecuencias de la revocación
En caso de que revoque este contrato, estaremos obligados a reembolsarle todos los pagos que hayamos recibido de su parte, incluyendo los costes de entrega (a excepción de los costes adicionales que se deriven en caso de que usted opte por otra modalidad de suministro diferente a la modalidad de suministro estándar más económica ofrecida por nosotros) con carácter inmediato y como máximo dentro de un plazo de 14 días contados a partir del día de la recepción de la notificación sobre su revocación del presente contrato en nuestras dependencias. Para efectuar dicho reembolso, utilizaremos la misma modalidad de pago que utilizó usted al efectuar la transacción original, a no ser que se haya acordado algo diferente expresamente con usted. En ningún caso se le abonará ninguna contraprestación con motivo de dicho reembolso.
Nosotros podremos negarnos a efectuar el reembolso hasta que hayamos recuperado de nuevo las mercancías o hasta que nos demuestre mediante un comprobante que nos ha enviado las mercancías, lo cual dependerá del hecho que se produzca antes.
Usted está obligado a enviarnos de vuelta o entregarnos las mercancías de inmediato y, en cualquier caso, como máximo dentro de un periodo de 14 días contados a partir del día en el que nos informe de la revocación del presente contrato, lo cual tendrá lugar en nuestra dirección . El plazo quedará salvaguardado si efectúa el envío de las mercancías antes de que expire el plazo de 14 días.
Usted asumirá los costes directos de la devolución de las mercancías.
Usted solo deberá responder en caso de depreciación de las mercancías cuando dicha depreciación se atribuya a una manipulación no necesaria para la comprobación de la naturaleza, las propiedades y el funcionamiento de las mercancías.
Motivos de exclusión y de extinción
El derecho de revocación no tendrá validez en caso de contratos:
relacionados con el suministro de mercancías que no hayan sido prefabricadas y para cuya fabricación sea determinante una selección o definición individual por parte del consumidor, o bien que hayan sido concebidas unívocamente en base a las necesidades personales del consumidor
relacionados con el suministro de mercancías que pueden corromperse rápidamente o cuya fecha de caducidad podría sobrepasarse rápidamente
relacionados con el suministro de bebidas alcohólicas cuyo precio haya sido acordado en el momento de la celebración del contrato, pero que no puedan ser suministradas antes de los 30 días siguientes a la fecha de celebración del contrato y cuyo valor actual dependa de las fluctuaciones del mercado, sobre lo cual el empresario no tiene ninguna influencia
relacionados con el suministro de periódicos, revistas o revistas ilustradas, a excepción de contratos de suscripción.
El derecho de revocación se extinguirá de forma anticipada en caso de contratos:
relacionados con el suministro de mercancías precintadas que no sean apropiadas para ser devueltas por motivos de protección de la salud o de higiene cuando su precinto haya sido retirado tras el suministro
relacionados con el suministro de mercancías que, debido a su naturaleza, hayan sido mezcladas de forma inseparable con otras mercancías tras el suministro
relacionados con suministros de grabaciones de sonido o vídeo o software informático en un embalaje precintado si dicho precinto ha sido retirado tras el suministro.
Modelo de formulario de revocación
(Si desea revocar el contrato, rellene este formulario y envíenoslo.)
A Moluna GmbH, Engberdingdamm 27, 48268 Greven, nº telefax: 02571/5 69 89 30, dirección de e-Mail: abe@moluna.de :
Por la presente, revoco/revocamos () el contrato firmado por mí/por nosotros () sobre la compra de las siguientes mercancías ()/
la prestación de los siguientes servicios ()
Fecha del pedido ()/ de la recepción ()
Nombre del consumidor/de los consumidores
Dirección del consumidor/de los consumidores
Firma del consumidor/de los consumidores (solo en caso de notificación en papel)
Fecha
(*) Tachar lo que no proceda.
II. Kundeninformationen
Moluna GmbH
Engberdingdamm 27
48268 Greven
Deutschland
Telefon: 02571/5698933
E-Mail: abe@moluna.de
Wir sind nicht bereit und nicht verpflichtet, an Streitbeilegungsverfahren vor Verbraucherschlichtungsstellen teilzunehmen.
Die technischen Schritte zum Vertragsschluss, der Vertragsschluss selbst und die Korrekturmöglichkeiten erfolgen nach Maßgabe der Regelungen "Zustandekommen des Vertrages" unserer Allgemeinen Geschäftsbedingungen (Teil I.).
3.1. Vertragssprache ist deutsch .
3.2. Der vollständige Vertragstext wird von uns nicht gespeichert. Vor Absenden der Bestellung können die Vertragsdaten über die Druckfunktion des Browsers ausgedruckt oder elektronisch gesichert werden. Nach Zugang der Bestellung bei uns werden die Bestelldaten, die gesetzlich vorgeschriebenen Informationen bei Fernabsatzverträgen und die Allgemeinen Geschäftsbedingungen nochmals per E-Mail an Sie übersandt.
Die wesentlichen Merkmale der Ware und/oder Dienstleistung finden sich im jeweiligen Angebot.
5.1. Die in den jeweiligen Angeboten angeführten Preise sowie die Versandkosten stellen Gesamtpreise dar. Sie beinhalten alle Preisbestandteile einschließlich aller anfallenden Steuern.
5.2. Die anfallenden Versandkosten sind nicht im Kaufpreis enthalten. Sie sind über eine entsprechend bezeichnete Schaltfläche auf unserer Internetpräsenz oder im jeweiligen Angebot aufrufbar, werden im Laufe des Bestellvorganges gesondert ausgewiesen und sind von Ihnen zusätzlich zu tragen, soweit nicht die versandkostenfreie Lieferung zugesagt ist.
5.3. Die Ihnen zur Verfügung stehenden Zahlungsarten sind unter einer entsprechend bezeichneten Schaltfläche auf unserer Internetpräsenz oder im jeweiligen Angebot ausgewiesen.
5.4. Soweit bei den einzelnen Zahlungsarten nicht anders angegeben, sind die Zahlungsansprüche aus dem geschlossenen Vertrag sofort zur Zahlung fällig.
6.1. Die Lieferbedingungen, der Liefertermin sowie gegebenenfalls bestehende Lieferbeschränkungen finden sich unter einer entsprechend bezeichneten Schaltfläche auf unserer Internetpräsenz oder im jeweiligen Angebot.
Soweit im jeweiligen Angebot oder unter der entsprechend bezeichneten Schaltfläche keine andere Frist angegeben ist, erfolgt die Lieferung der Ware innerhalb von 3-5 Tagen nach Vertragsschluss (bei vereinbarter Vorauszahlung jedoch erst nach dem Zeitpunkt Ihrer Zahlungsanweisung).
6.2. Soweit Sie Verbraucher sind ist gesetzlich geregelt, dass die Gefahr des zufälligen Untergangs und der zufälligen Verschlechterung der verkauften Sache während der Versendung erst mit der Übergabe der Ware an Sie übergeht, unabhängig davon, ob die Versendung versichert oder unversichert erfolgt. Dies gilt nicht, wenn Sie eigenständig ein nicht vom Unternehmer benanntes Transportunternehmen oder eine sonst zur Ausführung der Versendung bestimmte Person beauftragt haben.
Sind Sie Unternehmer, erfolgt die Lieferung und Versendung auf Ihre Gefahr.
Die Mängelhaftung richtet sich nach der Regelung "Gewährleistung" in unseren Allgemeinen Geschäftsbedingungen (Teil I).
letzte Aktualisierung: 23.10.2019
| Cantidad del pedido | De 26 a 60 días hábiles | De 26 a 60 días hábiles |
|---|---|---|
| Primer artículo | EUR 48.99 | EUR 48.99 |
Los plazos de entrega los establecen los vendedores y varían según el transportista y la ubicación. Los pedidos que pasan por la aduana pueden sufrir retrasos y los compradores son responsables de los aranceles o tarifas asociadas. Los vendedores pueden ponerse en contacto con usted en relación con cargos adicionales para cubrir cualquier aumento en los costes de envío de los artículos.