Librería:
preigu, Osnabrück, Alemania
Calificación del vendedor: 5 de 5 estrellas
Vendedor de AbeBooks desde 5 de agosto de 2024
Electrocardiography Signal Analysis Using Neural Networks on FPGA | System Design and Implementation | Mohamed G. Egila (u. a.) | Taschenbuch | 124 S. | Englisch | 2017 | LAP LAMBERT Academic Publishing | EAN 9783330317840 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu. N° de ref. del artículo 109342042
Electrocardiography (ECG) signal analysis is considered one of the core components of any integrated medical care systems. ECG diagnosis is one of the most valuable diagnostic tools. This book presents a proposed design for an integrated ECG diagnosing system. This system uses digital system processing techniques to analyze ECG signals. This methodology employs Highpass Least-Square Linear Phase Finite Impulse Response (FIR) filtering technique to remove the baseline wander noise embedded in the input ECG signal to the system or reduce the noise as much as possible. Discrete Wavelet Transform (DWT) was utilized as a feature extraction methodology to extract the reduced feature set from the input ECG signal. The design uses back propagation neural network as a classifier to determine whether the input ECG signal represents normal or abnormal ECG signal. The whole system is implemented on Field Programming Gate Array (FPGA) board. Necessary simulations for the implemented system have been done, indicating that the implemented system has a good accuracy compared to other designs, achieving total accuracy of 97.8%, and achieving reduction in resources on FPGA implementation.
Acerca del autor: Mohamed Egila received his Bachelor degree, and Master degree in Electronics and Communications from Cairo University,Egypt, in 2003 and 2008 respectively, and PhD degree in Electronics and Communications from Ain Shams University, Egypt, in 2016. He works now as a Researcher in Microelectronics Department Electronics Research Institute since 2016.
Título: Electrocardiography Signal Analysis Using ...
Editorial: LAP LAMBERT Academic Publishing
Año de publicación: 2017
Encuadernación: Taschenbuch
Condición: Neu
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Egila Mohamed G.Mohamed Egila received his Bachelor degree, and Master degree in Electronics and Communications from Cairo University,Egypt, in 2003 and 2008 respectively, and PhD degree in Electronics and Communications from Ain Sha. Nº de ref. del artículo: 151237664
Cantidad disponible: Más de 20 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware -Electrocardiography (ECG) signal analysis is considered one of the core components of any integrated medical care systems. ECG diagnosis is one of the most valuable diagnostic tools. This book presents a proposed design for an integrated ECG diagnosing system. This system uses digital system processing techniques to analyze ECG signals. This methodology employs Highpass Least-Square Linear Phase Finite Impulse Response (FIR) filtering technique to remove the baseline wander noise embedded in the input ECG signal to the system or reduce the noise as much as possible. Discrete Wavelet Transform (DWT) was utilized as a feature extraction methodology to extract the reduced feature set from the input ECG signal. The design uses back propagation neural network as a classifier to determine whether the input ECG signal represents normal or abnormal ECG signal. The whole system is implemented on Field Programming Gate Array (FPGA) board. Necessary simulations for the implemented system have been done, indicating that the implemented system has a good accuracy compared to other designs, achieving total accuracy of 97.8%, and achieving reduction in resources on FPGA implementation.Books on Demand GmbH, Überseering 33, 22297 Hamburg 124 pp. Englisch. Nº de ref. del artículo: 9783330317840
Cantidad disponible: 2 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Electrocardiography (ECG) signal analysis is considered one of the core components of any integrated medical care systems. ECG diagnosis is one of the most valuable diagnostic tools. This book presents a proposed design for an integrated ECG diagnosing system. This system uses digital system processing techniques to analyze ECG signals. This methodology employs Highpass Least-Square Linear Phase Finite Impulse Response (FIR) filtering technique to remove the baseline wander noise embedded in the input ECG signal to the system or reduce the noise as much as possible. Discrete Wavelet Transform (DWT) was utilized as a feature extraction methodology to extract the reduced feature set from the input ECG signal. The design uses back propagation neural network as a classifier to determine whether the input ECG signal represents normal or abnormal ECG signal. The whole system is implemented on Field Programming Gate Array (FPGA) board. Necessary simulations for the implemented system have been done, indicating that the implemented system has a good accuracy compared to other designs, achieving total accuracy of 97.8%, and achieving reduction in resources on FPGA implementation. 124 pp. Englisch. Nº de ref. del artículo: 9783330317840
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Electrocardiography (ECG) signal analysis is considered one of the core components of any integrated medical care systems. ECG diagnosis is one of the most valuable diagnostic tools. This book presents a proposed design for an integrated ECG diagnosing system. This system uses digital system processing techniques to analyze ECG signals. This methodology employs Highpass Least-Square Linear Phase Finite Impulse Response (FIR) filtering technique to remove the baseline wander noise embedded in the input ECG signal to the system or reduce the noise as much as possible. Discrete Wavelet Transform (DWT) was utilized as a feature extraction methodology to extract the reduced feature set from the input ECG signal. The design uses back propagation neural network as a classifier to determine whether the input ECG signal represents normal or abnormal ECG signal. The whole system is implemented on Field Programming Gate Array (FPGA) board. Necessary simulations for the implemented system have been done, indicating that the implemented system has a good accuracy compared to other designs, achieving total accuracy of 97.8%, and achieving reduction in resources on FPGA implementation. Nº de ref. del artículo: 9783330317840
Cantidad disponible: 1 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 26394733924
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand. Nº de ref. del artículo: 401643195
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND. Nº de ref. del artículo: 18394733934
Cantidad disponible: 4 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 124 pages. 8.66x5.91x0.28 inches. In Stock. Nº de ref. del artículo: 3330317841
Cantidad disponible: 1 disponibles