Elastic Shape Analysis of Three-Dimensional Objects (Paperback)

Ian H. Jermyn

ISBN 10: 3031006917 ISBN 13: 9783031006913
Editorial: Springer International Publishing AG, Cham, 2017
Nuevos Paperback

Librería: AussieBookSeller, Truganina, VIC, Australia Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Vendedor de AbeBooks desde 22 de junio de 2007

Este artículo en concreto ya no está disponible.

Descripción

Descripción:

Paperback. Statistical analysis of shapes of 3D objects is an important problem with a wide range of applications. This analysis is difficult for many reasons, including the fact that objects differ in both geometry and topology. In this manuscript, we narrow the problem by focusing on objects with fixed topology, say objects that are diffeomorphic to unit spheres, and develop tools for analyzing their geometries. The main challenges in this problem are to register points across objects and to perform analysis while being invariant to certain shape-preserving transformations. We develop a comprehensive framework for analyzing shapes of spherical objects, i.e., objects that are embeddings of a unit sphere in #x211D;, including tools for: quantifying shape differences, optimally deforming shapes into each other, summarizing shape samples, extracting principal modes of shape variability, and modeling shape variability associated with populations. An important strength of this frameworkis that it is elastic: it performs alignment, registration, and comparison in a single unified framework, while being invariant to shape-preserving transformations. The approach is essentially Riemannian in the following sense. We specify natural mathematical representations of surfaces of interest, and impose Riemannian metrics that are invariant to the actions of the shape-preserving transformations. In particular, they are invariant to reparameterizations of surfaces. While these metrics are too complicated to allow broad usage in practical applications, we introduce a novel representation, termed square-root normal fields (SRNFs), that transform a particular invariant elastic metric into the standard L2 metric. As a result, one can use standard techniques from functional data analysis for registering, comparing, and summarizing shapes. Specifically, this results in: pairwise registration of surfaces; computation of geodesic paths encoding optimal deformations; computation of Karcher means and covariances under the shape metric; tangent Principal Component Analysis (PCA) and extraction of dominant modes of variability; and finally, modeling of shape variability using wrapped normal densities. These ideas are demonstrated using two case studies: the analysis of surfaces denoting human bodies in terms of shape and pose variability; and the clustering and classification of the shapes of subcortical brain structures for use in medical diagnosis. This book develops these ideas without assuming advanced knowledge in differential geometry and statistics. We summarize some basic tools from differential geometry in the appendices, and introduce additional concepts and terminology as needed in the individual chapters. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. N° de ref. del artículo 9783031006913

Denunciar este artículo

Sinopsis:

Statistical analysis of shapes of 3D objects is an important problem with a wide range of applications. This analysis is difficult for many reasons, including the fact that objects differ in both geometry and topology. In this manuscript, we narrow the problem by focusing on objects with fixed topology, say objects that are diffeomorphic to unit spheres, and develop tools for analyzing their geometries. The main challenges in this problem are to register points across objects and to perform analysis while being invariant to certain shape-preserving transformations.

We develop a comprehensive framework for analyzing shapes of spherical objects, i.e., objects that are embeddings of a unit sphere in #x211D;, including tools for: quantifying shape differences, optimally deforming shapes into each other, summarizing shape samples, extracting principal modes of shape variability, and modeling shape variability associated with populations. An important strength of this frameworkis that it is elastic: it performs alignment, registration, and comparison in a single unified framework, while being invariant to shape-preserving transformations.

The approach is essentially Riemannian in the following sense. We specify natural mathematical representations of surfaces of interest, and impose Riemannian metrics that are invariant to the actions of the shape-preserving transformations. In particular, they are invariant to reparameterizations of surfaces. While these metrics are too complicated to allow broad usage in practical applications, we introduce a novel representation, termed square-root normal fields (SRNFs), that transform a particular invariant elastic metric into the standard L² metric. As a result, one can use standard techniques from functional data analysis for registering, comparing, and summarizing shapes. Specifically, this results in: pairwise registration of surfaces; computation of geodesic paths encoding optimal deformations; computation of Karcher means and covariances under the shape metric; tangent Principal Component Analysis (PCA) and extraction of dominant modes of variability; and finally, modeling of shape variability using wrapped normal densities.

These ideas are demonstrated using two case studies: the analysis of surfaces denoting human bodies in terms of shape and pose variability; and the clustering and classification of the shapes of subcortical brain structures for use in medical diagnosis.

This book develops these ideas without assuming advanced knowledge in differential geometry and statistics. We summarize some basic tools from differential geometry in the appendices, and introduce additional concepts and terminology as needed in the individual chapters.

Acerca del autor: Ian H. Jermyn received a B.A. Honours degree (First Class) in Physics from Oxford University, and a Ph.D. in Theoretical Physics from the University of Manchester, UK. After working as a postdoc at the International Centre for Theoretical Physics in Trieste, Italy, he studied for and received a Ph.D. in Computer Vision from the Computer Science department of the Courant Institute of Mathematical Sciences at New York University. He then joined the Ariana research group at INRIA Sophia Antipolis, France, first as a postdoctoral researcher, and then as a Senior Research Scientist. Since September 2010, he has been Associate Professor (Reader) in Statistics in the Department of Mathematical Sciences at Durham University. His research concerns statistical geometry: the statistical modeling of shape and geometric structure, particularly using random fields with complex interactions and Riemannian geometry. This work is motivated by problems of shape and texture modelling in image processing,computer vision, and computer graphics. Using a Bayesian approach, it has been extensively applied to different types of images, including biological and remote sensing imagery. He is also interested in information geometry as applied to inference.Sebastian Kurtek is currently an Assistant Professor in the Department of Statistics at The Ohio State University, which he joined in 2012. He received a B.S. degree in Mathematics from Tulane University in 2007, and M.S. and Ph.D. degrees in Biostatistics from Florida State University in 2009 and 2012, respectively. His main research interests include statistical shape analysis, functional data analysis, statistical image analysis, statistics on manifolds, medical imaging, and computational statistics. In particular, he is interested in the interplay between statistics and Riemannian geometry, and their role in developing solutions to various applied problems. He is a member of the American Statistical Association, Institute of Mathematical Statistics, and the IEEE.Hamid Laga received his Ph.D. degree in Computer Science from Tokyo Institute of Technology in 2006. He is currently an Associate Professor at Murdoch University (Australia) and an Adjunct Associate Professor with the Phenomics and Bioinformatics Research Centre (PBRC) of the University of South Australia (UniSA). His research interests span various fields of computer vision, computer graphics, and image processing, with a special focus on the 3D acquisition, modeling, and analysis of the shape of static and deformable 3D objects.Anuj Srivastava is a Professor of Statistics and a Distinguished Research Professor at the Florida State University. He obtained his Ph.D. degree in Electrical Engineering from Washington University in St. Louis in 1996 and was a visiting research associate at the Division of Applied Mathematics at Brown University during 1996-1997. He joined the Department of Statistics at the Florida State University in 1997 as an Assistant Professor, and was promoted to full Professor in 2007. He has held visiting positions at INRIA, France, University of Lille, France, and Durham University, UK. His areas of research interest include statistics on nonlinear manifolds, statistical image understanding, functional data analysis, and statistical shape theory. He has published more than 200 papers in refereed journals and proceedings of refereed international conferences. He has been an associate editor for leading journals in computer vision and image processing, including IEEE PAMI, IEEE TIP, JMIV, and CVIU. He is a fellow of IEEE, IAPR, and ASA.

"Sobre este título" puede pertenecer a otra edición de este libro.

Detalles bibliográficos

Título: Elastic Shape Analysis of Three-Dimensional ...
Editorial: Springer International Publishing AG, Cham
Año de publicación: 2017
Encuadernación: Paperback
Condición: new

Los mejores resultados en AbeBooks

Imagen del vendedor

Jermyn, Ian H.|Kurtek, Sebastian|Laga, Hamid|Srivastava, Anuj
ISBN 10: 3031006917 ISBN 13: 9783031006913
Nuevo Tapa blanda
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Statistical analysis of shapes of 3D objects is an important problem with a wide range of applications. This analysis is difficult for many reasons, including the fact that objects differ in both geometry and topology. In this manuscript, we narrow the . Nº de ref. del artículo: 608129080

Contactar al vendedor

Comprar nuevo

EUR 47,23
Convertir moneda
Gastos de envío: EUR 48,99
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Ian H. Jermyn (u. a.)
Publicado por Springer International Publishing, 2017
ISBN 10: 3031006917 ISBN 13: 9783031006913
Nuevo Taschenbuch

Librería: preigu, Osnabrück, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Elastic Shape Analysis of Three-Dimensional Objects | Ian H. Jermyn (u. a.) | Taschenbuch | xv | Englisch | 2017 | Springer International Publishing | EAN 9783031006913 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Nº de ref. del artículo: 121975142

Contactar al vendedor

Comprar nuevo

EUR 48,90
Convertir moneda
Gastos de envío: EUR 70,00
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 5 disponibles

Añadir al carrito

Imagen de archivo

Jermyn, Ian H.; Kurtek, Sebastian; Laga, Hamid; Srivastava, Anuj
Publicado por Springer, 2017
ISBN 10: 3031006917 ISBN 13: 9783031006913
Nuevo Tapa blanda

Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: ABLIING23Mar3113020034917

Contactar al vendedor

Comprar nuevo

EUR 52,45
Convertir moneda
Gastos de envío: EUR 3,43
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Ian H. Jermyn
ISBN 10: 3031006917 ISBN 13: 9783031006913
Nuevo Taschenbuch

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Neuware -Statistical analysis of shapes of 3D objects is an important problem with a wide range of applications. This analysis is difficult for many reasons, including the fact that objects differ in both geometry and topology. In this manuscript, we narrow the problem by focusing on objects with fixed topology, say objects that are diffeomorphic to unit spheres, and develop tools for analyzing their geometries. The main challenges in this problem are to register points across objects and to perform analysis while being invariant to certain shape-preserving transformations.We develop a comprehensive framework for analyzing shapes of spherical objects, i.e., objects that are embeddings of a unit sphere in #x211D;, including tools for: quantifying shape differences, optimally deforming shapes into each other, summarizing shape samples, extracting principal modes of shape variability, and modeling shape variability associated with populations. An important strength of this frameworkis that it is elastic: it performs alignment, registration, and comparison in a single unified framework, while being invariant to shape-preserving transformations.The approach is essentially Riemannian in the following sense. We specify natural mathematical representations of surfaces of interest, and impose Riemannian metrics that are invariant to the actions of the shape-preserving transformations. In particular, they are invariant to reparameterizations of surfaces. While these metrics are too complicated to allow broad usage in practical applications, we introduce a novel representation, termed square-root normal fields (SRNFs), that transform a particular invariant elastic metric into the standard L metric. As a result, one can use standard techniques from functional data analysis for registering, comparing, and summarizing shapes. Specifically, this results in: pairwise registration of surfaces; computation of geodesic paths encoding optimal deformations; computation of Karcher means and covariances under the shape metric; tangent Principal Component Analysis (PCA) and extraction of dominant modes of variability; and finally, modeling of shape variability using wrapped normal densities.These ideas are demonstrated using two case studies: the analysis of surfaces denoting human bodies in terms of shape and pose variability; and the clustering and classification of the shapes of subcortical brain structures for use in medical diagnosis.This book develops these ideas without assuming advanced knowledge in differential geometry and statistics. We summarize some basic tools from differential geometry in the appendices, and introduce additional concepts and terminology as needed in the individual chapters.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 188 pp. Englisch. Nº de ref. del artículo: 9783031006913

Contactar al vendedor

Comprar nuevo

EUR 53,49
Convertir moneda
Gastos de envío: EUR 60,00
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Ian H. Jermyn
Publicado por Springer International Publishing, 2017
ISBN 10: 3031006917 ISBN 13: 9783031006913
Nuevo Taschenbuch

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Statistical analysis of shapes of 3D objects is an important problem with a wide range of applications. This analysis is difficult for many reasons, including the fact that objects differ in both geometry and topology. In this manuscript, we narrow the problem by focusing on objects with fixed topology, say objects that are diffeomorphic to unit spheres, and develop tools for analyzing their geometries. The main challenges in this problem are to register points across objects and to perform analysis while being invariant to certain shape-preserving transformations. We develop a comprehensive framework for analyzing shapes of spherical objects, i.e., objects that are embeddings of a unit sphere in #x211D;, including tools for: quantifying shape differences, optimally deforming shapes into each other, summarizing shape samples, extracting principal modes of shape variability, and modeling shape variability associated with populations. An important strength of this frameworkis that it is elastic: it performs alignment, registration, and comparison in a single unified framework, while being invariant to shape-preserving transformations. The approach is essentially Riemannian in the following sense. We specify natural mathematical representations of surfaces of interest, and impose Riemannian metrics that are invariant to the actions of the shape-preserving transformations. In particular, they are invariant to reparameterizations of surfaces. While these metrics are too complicated to allow broad usage in practical applications, we introduce a novel representation, termed square-root normal fields (SRNFs), that transform a particular invariant elastic metric into the standard L metric. As a result, one can use standard techniques from functional data analysis for registering, comparing, and summarizing shapes. Specifically, this results in: pairwise registration of surfaces; computation of geodesic paths encoding optimal deformations; computation of Karcher means and covariances under the shape metric; tangent Principal Component Analysis (PCA) and extraction of dominant modes of variability; and finally, modeling of shape variability using wrapped normal densities. These ideas are demonstrated using two case studies: the analysis of surfaces denoting human bodies in terms of shape and pose variability; and the clustering and classification of the shapes of subcortical brain structures for use in medical diagnosis. This book develops these ideas without assuming advanced knowledge in differential geometry and statistics. We summarize some basic tools from differential geometry in the appendices, and introduce additional concepts and terminology as needed in the individual chapters. Nº de ref. del artículo: 9783031006913

Contactar al vendedor

Comprar nuevo

EUR 53,49
Convertir moneda
Gastos de envío: EUR 61,82
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Ian H. Jermyn
ISBN 10: 3031006917 ISBN 13: 9783031006913
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware - Statistical analysis of shapes of 3D objects is an important problem with a wide range of applications. This analysis is difficult for many reasons, including the fact that objects differ in both geometry and topology. In this manuscript, we narrow the problem by focusing on objects with fixed topology, say objects that are diffeomorphic to unit spheres, and develop tools for analyzing their geometries. The main challenges in this problem are to register points across objects and to perform analysis while being invariant to certain shape-preserving transformations. We develop a comprehensive framework for analyzing shapes of spherical objects, i.e., objects that are embeddings of a unit sphere in #x211D;, including tools for: quantifying shape differences, optimally deforming shapes into each other, summarizing shape samples, extracting principal modes of shape variability, and modeling shape variability associated with populations. An important strength of this framework is that it is elastic: it performs alignment, registration, and comparison in a single unified framework, while being invariant to shape-preserving transformations. The approach is essentially Riemannian in the following sense. We specify natural mathematical representations of surfaces of interest, and impose Riemannian metrics that are invariant to the actions of the shape-preserving transformations. In particular, they are invariant to reparameterizations of surfaces. While these metrics are too complicated to allow broad usage in practical applications, we introduce a novel representation, termed square-root normal fields (SRNFs), that transform a particular invariant elastic metric into the standard L metric. As a result, one can use standard techniques from functional data analysis for registering, comparing, and summarizing shapes. Specifically, this results in: pairwise registration of surfaces; computation of geodesic paths encoding optimal deformations; computation of Karcher means and covariances under the shape metric; tangent Principal Component Analysis (PCA) and extraction of dominant modes of variability; and finally, modeling of shape variability using wrapped normal densities. These ideas are demonstrated using two case studies: the analysis of surfaces denoting human bodies in terms of shape and pose variability; and the clustering and classification of the shapes of subcortical brain structures for use in medical diagnosis. This book develops these ideas without assuming advanced knowledge in differential geometry and statistics. We summarize some basic tools from differential geometry in the appendices, and introduce additional concepts and terminology as needed in the individual chapters. 188 pp. Englisch. Nº de ref. del artículo: 9783031006913

Contactar al vendedor

Comprar nuevo

EUR 53,49
Convertir moneda
Gastos de envío: EUR 23,00
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Jermyn, Ian H.; Kurtek, Sebastian; Laga, Hamid; Srivastava, Anuj
Publicado por Springer, 2017
ISBN 10: 3031006917 ISBN 13: 9783031006913
Nuevo Tapa blanda

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 44570994-n

Contactar al vendedor

Comprar nuevo

EUR 53,50
Convertir moneda
Gastos de envío: EUR 2,27
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Jermyn, Ian H.
Publicado por Springer 2017-09, 2017
ISBN 10: 3031006917 ISBN 13: 9783031006913
Nuevo PF

Librería: Chiron Media, Wallingford, Reino Unido

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

PF. Condición: New. Nº de ref. del artículo: 6666-IUK-9783031006913

Contactar al vendedor

Comprar nuevo

EUR 56,32
Convertir moneda
Gastos de envío: EUR 17,77
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 10 disponibles

Añadir al carrito

Imagen del vendedor

Jermyn, Ian H.; Kurtek, Sebastian; Laga, Hamid; Srivastava, Anuj
Publicado por Springer, 2017
ISBN 10: 3031006917 ISBN 13: 9783031006913
Nuevo Tapa blanda

Librería: GreatBookPricesUK, Woodford Green, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 44570994-n

Contactar al vendedor

Comprar nuevo

EUR 58,03
Convertir moneda
Gastos de envío: EUR 17,21
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Jermyn, Ian H.; Kurtek, Sebastian; Laga, Hamid; Srivastava, Anuj
Publicado por Springer, 2017
ISBN 10: 3031006917 ISBN 13: 9783031006913
Nuevo Tapa blanda

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In English. Nº de ref. del artículo: ria9783031006913_new

Contactar al vendedor

Comprar nuevo

EUR 58,05
Convertir moneda
Gastos de envío: EUR 13,74
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Existen otras 5 copia(s) de este libro

Ver todos los resultados de su búsqueda