Librería:
Biblios, Frankfurt am main, HESSE, Alemania
Calificación del vendedor: 4 de 5 estrellas
Vendedor de AbeBooks desde 10 de septiembre de 2024
N° de ref. del artículo 18396617872
An engaging and accessible introduction to deep learning perfect for students and professionals
In Deep Learning: A Practical Introduction, a team of distinguished researchers delivers a book complete with coverage of the theoretical and practical elements of deep learning. The book includes extensive examples, end-of-chapter exercises, homework, exam material, and a GitHub repository containing code and data for all provided examples.
Combining contemporary deep learning theory with state-of-the-art tools, the chapters are structured to maximize accessibility for both beginning and intermediate students. The authors have included coverage of TensorFlow, Keras, and Pytorch. Readers will also find:
Perfect for undergraduate and graduate students studying computer vision, computer science, artificial intelligence, and neural networks, Deep Learning: A Practical Introduction will also benefit practitioners and researchers in the fields of deep learning and machine learning in general.
Acerca del autor:
Manel Martínez-Ramón, PhD, is King Felipe VI Endowed Chair and Professor in the Department of Electrical and Computer Engineering at the University of New Mexico in the United States. He earned his doctorate in Telecommunication Technologies at the Universidad Carlos III de Madrid in 1999.
Meenu Ajith, PhD, is a Postdoctoral Research Associate in Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) at Georgia State University, Georgia Institute of Technology, and Emory University. She earned her doctorate degree in Electrical Engineering from the University of New Mexico in 2022. Her research interests include machine learning, computer vision, medical imaging, and image processing.
Aswathy Rajendra Kurup, PhD, is a Data Scientist at Intel Corporation. She earned her doctorate degree in Electrical Engineering from the University of Mexico in 2022. Her research interests include image processing, signal processing, deep learning, computer vision, data analysis and data processing.
Título: Deep Learning: A Practical Introduction
Editorial: Wiley
Año de publicación: 2024
Encuadernación: Encuadernación de tapa dura
Condición: New
Librería: medimops, Berlin, Alemania
Condición: very good. Gut/Very good: Buch bzw. Schutzumschlag mit wenigen Gebrauchsspuren an Einband, Schutzumschlag oder Seiten. / Describes a book or dust jacket that does show some signs of wear on either the binding, dust jacket or pages. Nº de ref. del artículo: M01119861861-V
Cantidad disponible: 1 disponibles
Librería: Speedyhen, London, Reino Unido
Condición: NEW. Nº de ref. del artículo: NW9781119861867
Cantidad disponible: 1 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 43160198-n
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
HRD. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: FW-9781119861867
Cantidad disponible: 15 disponibles
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
Hardcover. Condición: new. Hardcover. An engaging and accessible introduction to deep learning perfect for students and professionals In Deep Learning: A Practical Introduction, a team of distinguished researchers delivers a book complete with coverage of the theoretical and practical elements of deep learning. The book includes extensive examples, end-of-chapter exercises, homework, exam material, and a GitHub repository containing code and data for all provided examples. Combining contemporary deep learning theory with state-of-the-art tools, the chapters are structured to maximize accessibility for both beginning and intermediate students. The authors have included coverage of TensorFlow, Keras, and Pytorch. Readers will also find: Thorough introductions to deep learning and deep learning toolsComprehensive explorations of convolutional neural networks, including discussions of their elements, operation, training, and architecturesPractical discussions of recurrent neural networks and non-supervised approaches to deep learningFulsome treatments of generative adversarial networks as well as deep Bayesian neural networks Perfect for undergraduate and graduate students studying computer vision, computer science, artificial intelligence, and neural networks, Deep Learning: A Practical Introduction will also benefit practitioners and researchers in the fields of deep learning and machine learning in general. "Deep learning is a subset of machine learning in artificial intelligence that has networks capable of learning unsupervised from data that is unstructured or unlabeled. Also known as deep neural learning or deep neural network."-- Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9781119861867
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781119861867_new
Cantidad disponible: Más de 20 disponibles
Librería: CitiRetail, Stevenage, Reino Unido
Hardcover. Condición: new. Hardcover. An engaging and accessible introduction to deep learning perfect for students and professionals In Deep Learning: A Practical Introduction, a team of distinguished researchers delivers a book complete with coverage of the theoretical and practical elements of deep learning. The book includes extensive examples, end-of-chapter exercises, homework, exam material, and a GitHub repository containing code and data for all provided examples. Combining contemporary deep learning theory with state-of-the-art tools, the chapters are structured to maximize accessibility for both beginning and intermediate students. The authors have included coverage of TensorFlow, Keras, and Pytorch. Readers will also find: Thorough introductions to deep learning and deep learning toolsComprehensive explorations of convolutional neural networks, including discussions of their elements, operation, training, and architecturesPractical discussions of recurrent neural networks and non-supervised approaches to deep learningFulsome treatments of generative adversarial networks as well as deep Bayesian neural networks Perfect for undergraduate and graduate students studying computer vision, computer science, artificial intelligence, and neural networks, Deep Learning: A Practical Introduction will also benefit practitioners and researchers in the fields of deep learning and machine learning in general. "Deep learning is a subset of machine learning in artificial intelligence that has networks capable of learning unsupervised from data that is unstructured or unlabeled. Also known as deep neural learning or deep neural network."-- Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Nº de ref. del artículo: 9781119861867
Cantidad disponible: 1 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 43160198
Cantidad disponible: Más de 20 disponibles
Librería: moluna, Greven, Alemania
Gebunden. Condición: New. Nº de ref. del artículo: 506457122
Cantidad disponible: 1 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Hardback. Condición: New. New copy - Usually dispatched within 4 working days. 1007. Nº de ref. del artículo: B9781119861867
Cantidad disponible: Más de 20 disponibles