Deep Learning for NLP and Speech Recognition

Kamath, Uday; Liu, John; Whitaker, James

ISBN 10: 3030145956 ISBN 13: 9783030145958
Editorial: Springer, 2019
Nuevos Encuadernación de tapa dura

Librería: Best Price, Torrance, CA, Estados Unidos de America Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Vendedor de AbeBooks desde 30 de agosto de 2024

Este artículo en concreto ya no está disponible.

Descripción

Descripción:

SUPER FAST SHIPPING. N° de ref. del artículo 9783030145958

Denunciar este artículo

Sinopsis:

This textbook explains Deep Learning Architecture, with applications to various NLP Tasks, including Document Classification, Machine Translation, Language Modeling, and Speech Recognition. With the widespread adoption of deep learning, natural language processing (NLP),and speech applications in many areas (including Finance, Healthcare, and Government) there is a growing need for one comprehensive resource that maps deep learning techniques to NLP and speech and provides insights  into  using  the  tools  and  libraries  for  real-world  applications. Deep Learning for NLP and Speech Recognition explains recent deep learning methods applicable to NLP and speech, provides state-of-the-art approaches, and offers real-world case studies with code to provide hands-on experience.  


Many books focus on deep learning theory or deep learning for NLP-specific tasks while others are cookbooks for tools and libraries, but the constant flux of new algorithms, tools, frameworks, and libraries in a rapidly evolving landscape means that there are few available texts that offer the material in this book. 

The book is organized into three parts, aligning to different groups of readers and their expertise. The three parts are:

      Machine Learning, NLP, and Speech Introduction

The first part has three chapters that introduce readers to the fields of  NLP, speech recognition,  deep learning and machine learning with basic theory and hands-on case studies using Python-based tools and libraries.

      Deep Learning Basics

The five chapters in the second part introduce deep learning and various topics that are crucial for speech and text processing, including word embeddings, convolutional neural networks, recurrent neural networks and speech recognition basics. Theory, practical tips, state-of-the-art methods, experimentations and analysis in using the methods discussed in theory on real-world tasks.

      Advanced Deep Learning Techniques for Text and Speech

The third part has five chapters that discuss the latest and cutting-edge research in the areas of deep learning that intersect with NLP and speech. Topics including attention mechanisms, memory augmented networks, transfer learning, multi-task learning, domain adaptation, reinforcement learning, and end-to-end deep learning for speech recognition are covered using case studies. 

Acerca del autor:

Uday Kamath has more than 20 years of experience architecting and building analytics-based commercial solutions. He currently works as the Chief Analytics Officer at Digital Reasoning, one of the leading companies in AI for NLP and Speech Recognition, heading the Applied Machine Learning research group. Most recently, Uday served as the Chief Data Scientist at BAE Systems Applied Intelligence, building machine learning products and solutions for the financial industry, focused on fraud, compliance, and cybersecurity. Uday has previously authored many books on machine learning such as Machine Learning: End-to-End guide for Java developers: Data Analysis, Machine Learning, and Neural Networks simplified and Mastering Java Machine Learning: A Java developer's guide to implementing machine learning and big data architectures. Uday has published many academic papers in different machine learning journals and conferences. Uday has a Ph.D. in Big Data Machine Learning and was one of the first in generalized scaling of machine learning algorithms using evolutionary computing.

John Liu spent the past 22 years managing quantitative research, portfolio management and data science teams. He is currently CEO of Intelluron Corporation, an emerging AI-as-a-service solution company. Most recently, John was head of data science and data strategy as VP at Digital Reasoning. Previously, he was CIO of Spartus Capital, a quantitative investment firm in New York. Prior to that, John held senior executive roles at Citigroup, where he oversaw the portfolio solutions group that advised institutional clients on quantitative investment and risk strategies; at the Indiana Public Employees pension, where he managed the $7B public equities portfolio; at Vanderbilt University, where he oversaw the $2B equity and alternative investment portfolios; and at BNP Paribas, where he managedthe US index options and MSCI delta-one trading desks. He is known for his expertise in reinforcement learning applied to investment management and has authored numerous papers and book chapters on topics including natural language processing, representation learning, systemic risk, asset allocation, and EM theory. In 2016, John was named Nashville's Data Scientist of the Year. He earned his B.S., M.S., and Ph.D. in electrical engineering from the University of Pennsylvania and is a CFA Charterholder.

James (Jimmy) Whitaker manages Applied Research at Digital Reasoning. He currently leads deep learning developments in speech analytics in the FinTech space, and has spent the last 4 years building machine learning applications for NLP, Speech Recognition, and Computer Vision. He received his masters in Computer Science from the University of Oxford, where he received a distinction for his application of machine learning in the field of Steganalysis after completing his undergraduate degrees in Electrical Engineering and Computer Science from Christian Brothers University. Prior to his work in deep learning, Jimmy worked as a concept engineer and risk manager for complex transportation initiatives.

"Sobre este título" puede pertenecer a otra edición de este libro.

Detalles bibliográficos

Título: Deep Learning for NLP and Speech Recognition
Editorial: Springer
Año de publicación: 2019
Encuadernación: Encuadernación de tapa dura
Condición: New

Los mejores resultados en AbeBooks

Imagen de archivo

Kamath, Uday; Liu, John; Whitaker, James
Publicado por Springer, 2019
ISBN 10: 3030145956 ISBN 13: 9783030145958
Antiguo o usado Tapa dura Original o primera edición

Librería: AproposBooks&Comics, London, Reino Unido

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: Fine. 1st Edition. Nº de ref. del artículo: dal/hib/kent/28aug24/

Contactar al vendedor

Comprar usado

EUR 44,32
Gastos de envío: EUR 16,95
De Reino Unido a Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Kamath, Uday; Liu, John; Whitaker, James
Publicado por Springer, 2019
ISBN 10: 3030145956 ISBN 13: 9783030145958
Antiguo o usado Tapa dura Original o primera edición

Librería: SpringBooks, Berlin, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: Very Good. 1. Auflage. Unread, some shelfwear. Immediately dispatched from Germany. Nº de ref. del artículo: CE-2401C-GROTTENOLM-01-2000

Contactar al vendedor

Comprar usado

EUR 52,45
Gastos de envío: EUR 29,90
De Alemania a Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Uday Kamath|John Liu|James Whitaker
Publicado por Springer International Publishing, 2019
ISBN 10: 3030145956 ISBN 13: 9783030145958
Nuevo Tapa dura
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Gebunden. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. A comprehensive resource that builds up from elementary deep learning, text, and speech principles to advanced state-of-the-art neural architecturesA ready reference for deep learning techniques applicable to common NLP and speech recognition appl. Nº de ref. del artículo: 268493010

Contactar al vendedor

Comprar nuevo

EUR 98,54
Gastos de envío: EUR 48,99
De Alemania a Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Uday Kamath (u. a.)
Publicado por Springer International Publishing, 2019
ISBN 10: 3030145956 ISBN 13: 9783030145958
Nuevo Tapa dura
Impresión bajo demanda

Librería: preigu, Osnabrück, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Deep Learning for NLP and Speech Recognition | Uday Kamath (u. a.) | Buch | xxviii | Englisch | 2019 | Springer International Publishing | EAN 9783030145958 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand. Nº de ref. del artículo: 115356653

Contactar al vendedor

Comprar nuevo

EUR 102,30
Gastos de envío: EUR 70,00
De Alemania a Estados Unidos de America

Cantidad disponible: 5 disponibles

Añadir al carrito

Imagen de archivo

Kamath, Uday, Liu, John, Whitaker, James
Publicado por Springer, 2019
ISBN 10: 3030145956 ISBN 13: 9783030145958
Nuevo Tapa dura

Librería: Mispah books, Redhill, SURRE, Reino Unido

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: New. New. book. Nº de ref. del artículo: ERICA77330301459566

Contactar al vendedor

Comprar nuevo

EUR 108,61
Gastos de envío: EUR 28,35
De Reino Unido a Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Kamath, Uday; Liu, John; Whitaker, James
Publicado por Springer, 2019
ISBN 10: 3030145956 ISBN 13: 9783030145958
Nuevo Tapa dura

Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: ABLIING23Mar3113020007807

Contactar al vendedor

Comprar nuevo

EUR 113,46
Gastos de envío: EUR 3,43
A Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Kamath, Uday; Liu, John; Whitaker, James
Publicado por Springer, 2019
ISBN 10: 3030145956 ISBN 13: 9783030145958
Nuevo Tapa dura

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 35194595-n

Contactar al vendedor

Comprar nuevo

EUR 114,65
Gastos de envío: EUR 2,27
A Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Uday Kamath
ISBN 10: 3030145956 ISBN 13: 9783030145958
Nuevo Tapa dura
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This textbook explains Deep Learning Architecture, with applications to various NLP Tasks, including Document Classification, Machine Translation, Language Modeling, and Speech Recognition.With the widespread adoption of deep learning, natural language processing (NLP),and speech applications in many areas (including Finance, Healthcare, and Government) there is a growing need for one comprehensive resource that maps deep learning techniques to NLP and speech and provides insights into using the tools and libraries for real-world applications.Deep Learning for NLP and Speech Recognitionexplains recent deep learning methods applicable to NLP and speech, provides state-of-the-art approaches, and offers real-world case studies with code to provide hands-on experience.Many books focus on deep learning theory or deep learning for NLP-specific tasks while others are cookbooks for tools and libraries, but the constant flux of new algorithms, tools, frameworks, and libraries in a rapidly evolving landscape means that there are few available texts that offer the material in this book.The book is organized into three parts, aligning to different groups of readers and their expertise. The three parts are: Machine Learning, NLP, and Speech IntroductionThe first part has three chapters that introduce readers to the fields of NLP, speech recognition, deep learning and machine learning with basic theory and hands-on case studies using Python-based tools and libraries. Deep Learning BasicsThe five chapters in the second part introduce deep learning and various topics that are crucial for speech and text processing, including word embeddings, convolutional neural networks, recurrent neural networks and speech recognition basics. Theory, practical tips, state-of-the-art methods, experimentations and analysis in using the methods discussed in theory on real-world tasks. Advanced Deep Learning Techniques for Text and SpeechThe third part has five chapters that discuss the latest and cutting-edge research in the areas of deep learning that intersect with NLP and speech. Topics including attention mechanisms, memory augmented networks, transfer learning, multi-task learning, domain adaptation, reinforcement learning, and end-to-end deep learning for speech recognition are covered using case studies. 652 pp. Englisch. Nº de ref. del artículo: 9783030145958

Contactar al vendedor

Comprar nuevo

EUR 117,69
Gastos de envío: EUR 23,00
De Alemania a Estados Unidos de America

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Uday Kamath
Publicado por Springer International Publishing, 2019
ISBN 10: 3030145956 ISBN 13: 9783030145958
Nuevo Tapa dura

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This textbook explains Deep Learning Architecture, with applications to various NLP Tasks, including Document Classification, Machine Translation, Language Modeling, and Speech Recognition.With the widespread adoption of deep learning, natural language processing (NLP),and speech applications in many areas (including Finance, Healthcare, and Government) there is a growing need for one comprehensive resource that maps deep learning techniques to NLP and speech and provides insights into using the tools and libraries for real-world applications.Deep Learning for NLP and Speech Recognitionexplains recent deep learning methods applicable to NLP and speech, provides state-of-the-art approaches, and offers real-world case studies with code to provide hands-on experience.Many books focus on deep learning theory or deep learning for NLP-specific tasks while others are cookbooks for tools and libraries, but the constant flux of new algorithms, tools, frameworks, and libraries in a rapidly evolving landscape means that there are few available texts that offer the material in this book.The book is organized into three parts, aligning to different groups of readers and their expertise. The three parts are: Machine Learning, NLP, and Speech IntroductionThe first part has three chapters that introduce readers to the fields of NLP, speech recognition, deep learning and machine learning with basic theory and hands-on case studies using Python-based tools and libraries. Deep Learning BasicsThe five chapters in the second part introduce deep learning and various topics that are crucial for speech and text processing, including word embeddings, convolutional neural networks, recurrent neural networks and speech recognition basics. Theory, practical tips, state-of-the-art methods, experimentations and analysis in using the methods discussed in theory on real-world tasks. Advanced Deep Learning Techniques for Text and SpeechThe third part has five chapters that discuss the latest and cutting-edge research in the areas of deep learning that intersect with NLP and speech. Topics including attention mechanisms, memory augmented networks, transfer learning, multi-task learning, domain adaptation, reinforcement learning, and end-to-end deep learning for speech recognition are covered using case studies. Nº de ref. del artículo: 9783030145958

Contactar al vendedor

Comprar nuevo

EUR 117,69
Gastos de envío: EUR 67,02
De Alemania a Estados Unidos de America

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Kamath, Uday; Liu, John; Whitaker, James
Publicado por Springer, 2019
ISBN 10: 3030145956 ISBN 13: 9783030145958
Nuevo Tapa dura

Librería: GreatBookPricesUK, Woodford Green, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 35194595-n

Contactar al vendedor

Comprar nuevo

EUR 117,95
Gastos de envío: EUR 17,01
De Reino Unido a Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Existen otras 10 copia(s) de este libro

Ver todos los resultados de su búsqueda